Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens’ Preparation
2.1.1. Specimen Machining and Sintering Process
2.1.2. Bioglass Synthesis and Application
2.1.3. Surface Treatment and Specimen Grouping
2.2. Material Testing
2.2.1. Surface Morphology and Chemical Analysis
2.2.2. Measurement of Surface Roughness
2.2.3. Measurement of Surface Hardness
2.2.4. Microshear Bond Strength Testing
2.2.5. Microshear bond strength calculation
- τ = bond strength (MPa);
- P = load at failure (N);
- π = 3.14;
- r = radius of the microcylinder.
2.3. Statistical Analysis
3. Results
3.1. Surface Morphology and Chemical Analysis Results
3.2. Surface Roughness Results
3.3. Vickers Micro-Hardness Results
3.4. Microshear Bond Strength Results
3.5. Mode of Failure Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef]
- Abd El-Ghany, O.S.; Sherief, A.H. Zirconia based ceramics, some clinical and biological aspects: Review. Future Dent. J. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Russo, D.S.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 74, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kern, M. Bonding to oxide ceramics—Laboratory testing versus clinical outcome. Dent. Mater. J. 2015, 31, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Passia, N.; Sasse, M.; Yazigi, C. Ten-year outcome of zirconia ceramic cantilever resin-bonded fixed dental prostheses and the influence of the reasons for missing incisors. J. Dent. 2017, 65, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Moezzizadeh, M.; Nojedehian, H.; Valizadeh Haghi, H. Effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement. Dent. Mater. J. 2017, 36, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- El-Wassefy, N.A. Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dent. Mater. J. 2017, 36, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Arango-Ospina, M.; Hupa, L.; Boccaccini, A.R. Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomed. Glasses 2019, 5, 124–139. [Google Scholar] [CrossRef]
- Sepulveda, P.; Jones, J.R.; Hench, L.L. Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 2001, 58, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Ahn, J.S.; Yi, Y.A.; Lee, Y.; Seo, D.G. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers. Biomed. Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzanakakis, E.G.C.; Tzoutzas, I.G.; Koidis, P.T. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J. Prosthet. Dent. 2016, 115, 9–19. [Google Scholar] [CrossRef]
- Kim, J.H.; Chae, S.; Lee, Y.; Han, G.J.; Cho, B.H. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic. Acta Odontol. Scand. 2014, 72, 745–752. [Google Scholar] [CrossRef]
- Westhauser, F.; Hohenbild, F.; Arango Ospina, M.; Schmitz, S.; Wilkesmann, S.; Hupa, L.; Moghaddam, A.; Boccaccini, A. Bioactive glass (BG) ICIE16 Shows promising osteogenic properties compared to Crystallized 45S5-BG. Int. J. Mol. Sci. 2020, 21, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulateef, M.R.; Nayif, M.M. Evaluation of Different Zirconia Surface Treatments on their Microhardness. Al–Rafidain Dent. J. 2020, 20, 273–282. [Google Scholar] [CrossRef]
- Zhanga, K.; Van Le, Q. Bioactive glass coated zirconia for dental implants: A review. J. Compos. Compd. 2020, 2, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, 100–121. [Google Scholar] [CrossRef]
- Simões, T.C.; Rubim, M.G.; de Carvalho, R.V.; de Sá, A.T.G.; Torres, W.A.M.; Moura, S.K. Effect of Polyacrylic Acid Conditioning on the Longevity of Bonding of Self—Adhesive Resin Cement to Dentin. J. Health Sci. 2018, 20, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.A.; Ahn, J.S.; Park, Y.J.; Jun, S.H.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and a self-adhesive resin cement. Oper. Dent. 2015, 40, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Shin, Y.; Yi, Y.A.; Kim, J.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. Scanning J. Scanning Microsc. 2014, 36, 479–486. [Google Scholar] [CrossRef]
- Atsu, S.S.; Kilicarslan, M.A.; Kucukesmen, H.C.; Aka, P.S. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J. Prosthet. Dent. 2006, 95, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.A.; Sophr, A.M.; de Goes, M.F.; Sobrinho, L.C.; Chan, D.C.N. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J. Prosthet. Dent. 2003, 89, 479–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R.; Malament, K.A.; Van Thompson, P.; Rekow, E.D. Damage accumulation and fatigue life of particle-abraded ceramics. Int. J. Prosthodont. 2006, 19, 442–448. [Google Scholar]
- Kern, M.; Wegner, S.M. Bonding to zirconia ceramic: Adhesion methods and their durability. Dent. Mater. 1998, 14, 64–71. [Google Scholar] [CrossRef]
- Wegner, S.M.; Gerdes, W.; Kern, M. Effect of different artificial aging conditions on ceramic-composite bond strength. Int. J. Prosthodont. 2002, 15, 267–272. [Google Scholar]
Materials | Batch | Composition | Manufacturer |
---|---|---|---|
Zirconia ceramic | 5,054,089 | Zirconium dioxide ZrO2 3Y-TZP-A or 3Y-TZP | Nacera, Doceram Medical Ceramic Gmbh-Hesslingsweg 65–67, D-44309 Dortmund, Germany |
Z-Prime Plus | 1,800,001,455 | BPDM, ethanol 75–85%, HEMA 5–10%, bis-GMA 5–10%, MDP 1–5%, proprietary (phosphate and carboxylate functional monomer) | Bisco Inc., Schaumburg, IL 60193, USA |
Bioglass | 24.5 wt % Na2O, 24.4 wt % CaO, 6 wt % P2O5, and 45 wt % SiO2 | Nanostream, 6th of October, Egypt | |
SuperCem, Self-Etch Self-Adhesive Resin Cement | 3,018,001 | Base: silicon dioxide; barium glass, bis-GMA, triethyleneglycol dimethacrylate, diurethan-dimethacrylate; catalyst:silicon dioxide; barium glass, triethyleneglycol dimethacrylate, diurethan-dimethacrylate, champhorquione | DentKist, Inc, Eli-Dent Group S.P.A., Korea |
Element | O | Si | Ca | Zr | Hf | Y | C | Al |
---|---|---|---|---|---|---|---|---|
Groups | At % | At% | At% | At% | At% | At% | At% | At% |
Sintered | 24.57 | 19 | 0.19 | 1.26 | 54.97 | |||
BMZr | 54.95 | 3.32 | 1.37 | 39.9 | 0.47 | |||
Sandblasted | 59.37 | 34.23 | 0.46 | 2.62 | 3.31 | |||
Z-prime | 26.27 | 14.29 | 0.23 | 1.23 | 56.62 | 1.35 |
Groups | Sintered_Zr | BM_Zr | Sandblasted_Zr | Z-Prime_Zr |
---|---|---|---|---|
Means + SD | 0.45 ± 0.04 a | 3.21 ± 0.39 b | 0.61 ± 0.03 a | 2.08 ± 0.71 c |
Groups | Sintered_Zr | BM_Zr | Sandblasted_Zr | Z-Prime_Zr |
---|---|---|---|---|
Means + SD | 1551.31 ± 115.55 a | 951.70 ± 170.81 b | 1853.21 ± 01.44) c | 1484.99 ± 319.31 a |
Groups | GI Sintered_Zr | G II BM_Zr | G III Sandblasted_Zr | G IV Z-Prime_Zr |
---|---|---|---|---|
Before thermocycling | 2.17 ± (0.92) a | 4.94 ± (0.63) b | 4.23 ± (0.84) bc | 5.08 ± (0.85) b |
After thermocycling | 1.70 ± (0.97) a | 3.73 ± (1.03) c | 3.21 ± (0.92) c | 3.25 ± (0.45) c |
Source of Variation | Sum of Squares | Df | Mean Squares | F | p |
---|---|---|---|---|---|
Surface treatment | 50.715 | 3 | 16.905 | 20.680 | 0.000 |
Thermocycling | 17.967 | 1 | 17.967 | 21.979 | 0.000 |
Surface treatment * Thermocycling | 3.368 | 3 | 1.123 | 1.373 | 0.262 |
Errors | 39.238 | 48 | 0.817 | ||
Total | 812.632 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Wassefy, N.A.M.; Özcan, M.; Abo El-Farag, S.A. Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength. Materials 2021, 14, 7107. https://doi.org/10.3390/ma14237107
El-Wassefy NAM, Özcan M, Abo El-Farag SA. Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength. Materials. 2021; 14(23):7107. https://doi.org/10.3390/ma14237107
Chicago/Turabian StyleEl-Wassefy, Noha Abdel Mawla, Mutlu Özcan, and Shaimaa Ahmed Abo El-Farag. 2021. "Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength" Materials 14, no. 23: 7107. https://doi.org/10.3390/ma14237107
APA StyleEl-Wassefy, N. A. M., Özcan, M., & Abo El-Farag, S. A. (2021). Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength. Materials, 14(23), 7107. https://doi.org/10.3390/ma14237107