Study of a Multicriterion Decision-Making Approach to the MQL Turning of AISI 304 Steel Using Hybrid Nanocutting Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Response Surface Methodology
2.2. Multicriterion Decision Making
2.2.1. Multiobjective Optimization Based on Ratio Analysis (MOORA)
2.2.2. VIKOR
2.2.3. TOPSIS
3. Results
3.1. Response Surface Methodology
3.2. MOORA Analysis for Mono and Hybrid Nanofluid
3.3. VIKOR Analysis for Mono and Hybrid Nanofluid
3.4. TOPSIS Analysis for Mono and Hybrid Nanofluid
4. Conclusions
- The use of hybrid nanofluid (alumina–graphene) resulted in an average reduction of response parameters by approximately 13% in cutting forces, 31% in surface roughness, and 14% in temperature, when compared to alumina nanofluid.
- It can be seen that the use of nanoparticle concentration in a lesser amount resulted in better surface characteristics and resulted in the lowering of cutting forces.
- Analysis of variance revealed the influence of input parameters on the response parameters. In both the cases, i.e., single and hybrid nanofluid, depth of cut showed a major impact while calculating force and temperature. The contribution of the depth of cut is approximately 65.81% and 57.63% in the case of single nanofluid while in the case of hybrid the % contributions are 68.38% and 51.14%, respectively. However, in the case of surface roughness, the most influenced parameter is the feed rate: its contributions in the cases of single and hybrid nanofluid are 63.18% and 58.47%, respectively.
- Response surface methodology is used for optimizing the response. As per RSM, the best process parameters for optimum response in the case of Al2O3 are 86.667 m/min velocity, 0.08 mm/min feed rate, 0.6 mm depth of cut, and at 1.5% of nanoparticle concentration. In the case of alumina–graphene, the suitable parameters for optimum results are 110.909 m/min velocity, 0.08 mm/min feed rate, 0.6484 mm depth of cut, and a nanoparticle concentration of 1.5%, respectively.
- The multicriteria decision-making techniques are used, such as MOORA, VIKOR, and TOPSIS for nonconflicting, nonbeneficial responses at 0.5 weight factor. According to the MCDM techniques, the best input parameter for optimum response is at 90 m/min velocity, 0.6 mm depth of cut, 0.08 mm/min feed rate, and 1% nanoparticle concentration.
- All three MCDM techniques showed similar responses, at a constant or fixed weight factor of 0.5.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Fc | Cutting force |
Vc | Cutting speed |
ap | Depth of cut |
np% | Nanofluid concentration |
fo | Feed rate |
Bi | Assignment value |
Ri | Relation closeness |
Qi | VIKOR index |
u | Utility |
r | Regret |
s+ | Separation from best solution |
s− | Separation from worst solution |
MQL | Minimum quality lubrication |
MOORA | Multiobjective optimization on the basis of ratio analysis |
VIKOR | VIšekriterijumsko KOmpromisno Rangiranje |
TOPSIS | Technique for order of preferences by similarity to the ideal solution |
MCDM | Multicriteria decision making |
RSM | Response surface methodology |
Appendix A
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 271,912 | 19,422 | 32.21 | 0.000 | ||
Linear | 4 | 260,306 | 65,076 | 107.91 | 0.000 | ||
Vc | 1 | 1250 | 1250 | 2.07 | 0.175 | 0.44779 | |
fo | 1 | 69,693 | 69,693 | 115.56 | 0.000 | 24.96624 | significant |
ap | 1 | 182,240 | 182,240 | 302.19 | 0.000 | 65.28413 | significant |
np% | 1 | 7122 | 7122 | 11.81 | 0.005 | 2.551326 | significant |
Square | 4 | 9236 | 2309 | 3.83 | 0.031 | ||
Vc * Vc | 1 | 130 | 130 | 0.22 | 0.651 | 0.04657 | |
fo * fo | 1 | 2364 | 2364 | 3.92 | 0.071 | 0.84686 | significant |
ap * ap | 1 | 7564 | 7564 | 12.54 | 0.004 | 2.709664 | significant |
np%*np% | 1 | 48 | 48 | 0.08 | 0.782 | 0.017195 | |
2-Way Interaction | 6 | 2370 | 395 | 0.65 | 0.687 | ||
Vc* fo | 1 | 173 | 173 | 0.29 | 0.602 | 0.061974 | |
Vc * ap | 1 | 1475 | 1475 | 2.45 | 0.144 | 0.528392 | |
Vc *np% | 1 | 4 | 4 | 0.01 | 0.936 | 0.001433 | |
fo * ap | 1 | 500 | 500 | 0.83 | 0.381 | 0.179116 | |
fo *np% | 1 | 201 | 201 | 0.33 | 0.575 | 0.072005 | |
ap *np% | 1 | 18 | 18 | 0.03 | 0.868 | 0.006448 | |
Error | 12 | 7237 | 603 | 2.592522 | |||
Lack-of-Fit | 10 | 6598 | 660 | 2.07 | 0.370 | 2.363612 | |
Pure Error | 2 | 639 | 319 | 0.22891 | |||
Total | 26 | 279,149 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 3.75774 | 0.26841 | 21.99 | 0.000 | ||
Linear | 4 | 3.25267 | 0.81317 | 66.61 | 0.000 | ||
Vc | 1 | 0.51884 | 0.51884 | 42.50 | 0.000 | 13.28918 | significant |
fo | 1 | 2.43565 | 2.43565 | 199.52 | 0.000 | 62.3849 | significant |
ap | 1 | 0.00409 | 0.00409 | 0.33 | 0.574 | 0.104758 | |
np% | 1 | 0.29409 | 0.29409 | 24.09 | 0.000 | 7.532599 | significant |
Square | 4 | 0.39176 | 0.09794 | 8.02 | 0.002 | ||
Vc * Vc | 1 | 0.00001 | 0.00001 | 0.00 | 0.981 | 0.000256 | |
fo * fo | 1 | 0.28201 | 0.28201 | 23.10 | 0.000 | 7.223191 | significant |
ap * ap | 1 | 0.00124 | 0.00124 | 0.10 | 0.755 | 0.03176 | |
np%*np% | 1 | 0.00638 | 0.00638 | 0.52 | 0.484 | 0.163413 | |
2-Way Interaction | 6 | 0.11331 | 0.01889 | 1.55 | 0.245 | ||
Vc* fo | 1 | 0.00434 | 0.00434 | 0.36 | 0.562 | 0.111161 | |
Vc * ap | 1 | 0.02055 | 0.02055 | 1.68 | 0.219 | 0.526352 | |
Vc *np% | 1 | 0.00904 | 0.00904 | 0.74 | 0.406 | 0.231544 | |
fo * ap | 1 | 0.00931 | 0.00931 | 0.76 | 0.400 | 0.238459 | |
fo *np% | 1 | 0.06514 | 0.06514 | 5.34 | 0.039 | 1.668447 | |
ap *np% | 1 | 0.00493 | 0.00493 | 0.40 | 0.537 | 0.126273 | |
Error | 12 | 0.14649 | 0.01221 | 3.752084 | |||
Lack-of-Fit | 10 | 0.14421 | 0.01442 | 12.63 | 0.076 | 3.693686 | |
Pure Error | 2 | 0.00228 | 0.00114 | 0.058398 | |||
Total | 26 | 3.90423 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 36,667.4 | 2619.1 | 19.34 | 0.000 | ||
Linear | 4 | 31,351.5 | 7837.9 | 57.88 | 0.000 | ||
Vc | 1 | 1061.5 | 1061.5 | 7.84 | 0.016 | 2.772098 | significant |
fo | 1 | 8140.1 | 8140.1 | 60.12 | 0.000 | 21.2578 | significant |
ap | 1 | 21,264.3 | 21,264.3 | 157.04 | 0.000 | 55.53153 | significant |
np% | 1 | 885.6 | 885.6 | 6.54 | 0.025 | 2.312737 | significant |
Square | 4 | 2134.3 | 533.6 | 3.94 | 0.029 | ||
Vc * Vc | 1 | 3.8 | 3.8 | 0.03 | 0.869 | 0.009924 | |
fo * fo | 1 | 167.3 | 167.3 | 1.24 | 0.288 | 0.436902 | |
ap * ap | 1 | 1943.3 | 1943.3 | 14.35 | 0.003 | 5.074911 | significant |
np%*np% | 1 | 92.1 | 92.1 | 0.68 | 0.426 | 0.240518 | |
2-Way Interaction | 6 | 3181.6 | 530.3 | 3.92 | 0.021 | ||
Vc* fo | 1 | 132.1 | 132.1 | 0.98 | 0.343 | 0.344978 | |
Vc * ap | 1 | 1165.0 | 1165.0 | 8.60 | 0.013 | 3.042387 | significant |
Vc *np% | 1 | 1656.1 | 1656.1 | 12.23 | 0.004 | 4.32489 | significant |
fo * ap | 1 | 163.3 | 163.3 | 1.21 | 0.294 | 0.426456 | |
fo *np% | 1 | 37.5 | 37.5 | 0.28 | 0.608 | 0.097931 | |
ap *np% | 1 | 27.6 | 27.6 | 0.20 | 0.660 | 0.072077 | |
Error | 12 | 1624.9 | 135.4 | 4.243412 | |||
Lack-of-Fit | 10 | 1551.4 | 155.1 | 4.23 | 0.206 | 4.051467 | |
Pure Error | 2 | 73.4 | 36.7 | 0.191683 | |||
Total | 26 | 38,292.3 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 214,022 | 15,287 | 16.17 | 0.000 | ||
Linear | 4 | 198,614 | 49,654 | 52.51 | 0.000 | ||
Vc | 1 | 2623 | 2623 | 2.77 | 0.122 | 1.163 | |
fo | 1 | 34,622 | 34,622 | 36.61 | 0.000 | 15.362 | significant |
ap | 1 | 155,455 | 155,455 | 164.39 | 0.000 | 68.977 | significant |
np% | 1 | 5915 | 5915 | 6.25 | 0.028 | 2.624 | significant |
Square | 4 | 12,667 | 3167 | 3.35 | 0.046 | ||
Vc * Vc | 1 | 84 | 84 | 0.09 | 0.771 | 0.037 | |
fo * fo | 1 | 6813 | 6813 | 7.20 | 0.020 | 3.0230 | significant |
ap * ap | 1 | 5312 | 5312 | 5.62 | 0.035 | 2.357 | significant |
np%*np% | 1 | 19 | 19 | 0.02 | 0.888 | 0.0084 | |
2-Way Interaction | 6 | 2741 | 457 | 0.48 | 0.809 | ||
Vc* fo | 1 | 336 | 336 | 0.35 | 0.562 | 0.149 | |
Vc * ap | 1 | 999 | 999 | 1.06 | 0.324 | 0.443 | |
Vc *np% | 1 | 90 | 90 | 0.10 | 0.763 | 0.039 | |
fo * ap | 1 | 861 | 861 | 0.91 | 0.359 | 0.382 | |
fo *np% | 1 | 137 | 137 | 0.14 | 0.710 | 0.060 | |
ap *np% | 1 | 318 | 318 | 0.34 | 0.573 | 0.141 | |
Error | 12 | 11,348 | 946 | 5.035 | |||
Lack-of-Fit | 10 | 11,222 | 1122 | 17.88 | 0.054 | 4.979 | |
Pure Error | 2 | 126 | 63 | 0.055 | |||
Total | 26 | 225,370 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 1.89893 | 0.13564 | 18.63 | 0.000 | ||
Linear | 4 | 1.63737 | 0.40934 | 56.24 | 0.000 | ||
Vc | 1 | 0.32364 | 0.32364 | 44.46 | 0.000 | 16.293 | significant |
fo | 1 | 1.14306 | 1.14306 | 157.04 | 0.000 | 57.547 | significant |
ap | 1 | 0.00188 | 0.00188 | 0.26 | 0.621 | 0.094 | |
np% | 1 | 0.16880 | 0.16880 | 23.19 | 0.000 | 8.498 | significant |
Square | 4 | 0.19034 | 0.04758 | 6.54 | 0.005 | ||
Vc * Vc | 1 | 0.00180 | 0.00180 | 0.25 | 0.628 | 0.0906 | |
fo * fo | 1 | 0.12994 | 0.12994 | 17.85 | 0.001 | 6.5418 | significant |
ap * ap | 1 | 0.00006 | 0.00006 | 0.01 | 0.927 | 0.0030 | |
np%*np% | 1 | 0.00477 | 0.00477 | 0.66 | 0.434 | 0.240 | |
2-Way Interaction | 6 | 0.07122 | 0.01187 | 1.63 | 0.222 | 3.585 | |
Vc* fo | 1 | 0.00918 | 0.00918 | 1.26 | 0.283 | 0.462 | |
Vc * ap | 1 | 0.00950 | 0.00950 | 1.30 | 0.276 | 0.478 | |
Vc *np% | 1 | 0.01552 | 0.01552 | 2.13 | 0.170 | 0.781 | |
fo * ap | 1 | 0.00436 | 0.00436 | 0.60 | 0.454 | 0.219 | |
fo *np% | 1 | 0.03084 | 0.03084 | 4.24 | 0.062 | 1.552 | |
ap *np% | 1 | 0.00183 | 0.00183 | 0.25 | 0.625 | 0.092 | |
Error | 12 | 0.08734 | 0.00728 | 4.397 | |||
Lack-of-Fit | 10 | 0.08606 | 0.00861 | 13.34 | 0.072 | 4.332 | |
Pure Error | 2 | 0.00129 | 0.00064 | 0.064 | |||
Total | 26 | 1.98628 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution | Remark |
---|---|---|---|---|---|---|---|
Model | 14 | 32,997.8 | 2357.0 | 12.40 | 0.000 | ||
Linear | 4 | 28,041.7 | 7010.4 | 36.88 | 0.000 | ||
Vc | 1 | 1746.0 | 1746.0 | 9.18 | 0.010 | 4.949 | significant |
fo | 1 | 8247.7 | 8247.7 | 43.39 | 0.000 | 23.378 | significant |
ap | 1 | 17,118.4 | 17,118.4 | 90.05 | 0.000 | 48.522 | significant |
np% | 1 | 929.6 | 929.6 | 4.89 | 0.047 | 2.6349 | significant |
Square | 4 | 2285.2 | 571.3 | 3.01 | 0.062 | ||
Vc * Vc | 1 | 201.8 | 201.8 | 1.06 | 0.323 | 0.572 | |
fo * fo | 1 | 309.2 | 309.2 | 1.63 | 0.226 | 0.876 | |
ap * ap | 1 | 1267.8 | 1267.8 | 6.67 | 0.024 | 3.593 | significant |
np%*np% | 1 | 238.0 | 238.0 | 1.25 | 0.285 | 0.674 | |
2-Way Interaction | 6 | 2671.0 | 445.2 | 2.34 | 0.099 | ||
Vc* fo | 1 | 118.9 | 118.9 | 0.63 | 0.444 | 0.337 | |
Vc * ap | 1 | 444.5 | 444.5 | 2.34 | 0.152 | 1.259 | |
Vc *np% | 1 | 1360.8 | 1360.8 | 7.16 | 0.020 | 3.857 | significant |
fo * ap | 1 | 121.3 | 121.3 | 0.64 | 0.440 | 0.343 | |
fo *np% | 1 | 604.7 | 604.7 | 3.18 | 0.100 | 1.7140 | |
ap *np% | 1 | 20.8 | 20.8 | 0.11 | 0.747 | 0.0589 | |
Error | 12 | 2281.2 | 190.1 | 6.4661 | |||
Lack-of-Fit | 10 | 2226.7 | 222.7 | 8.16 | 0.114 | 6.3116 | |
Pure Error | 2 | 54.6 | 27.3 | 0.1547 | |||
Total | 26 | 35,279.0 | 100 |
Decision Matrix | Normalizing Matrix | ||||||
---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | B | Rank | |||
511.4568 | 2.63064 | 238.717 | 0.2719 | 0.2376 | 0.2433 | −0.3764 | 27 |
461.075 | 2.29599 | 195.552 | 0.2451 | 0.2074 | 0.1993 | −0.3259 | 19 |
304.0594 | 1.426832 | 198.8272 | 0.1617 | 0.1289 | 0.2026 | −0.2466 | 9 |
247.841 | 2.15581 | 149.8645 | 0.1318 | 0.1947 | 0.1527 | −0.2396 | 8 |
374.3974 | 2.051186 | 197.3411 | 0.1990 | 0.1852 | 0.2011 | −0.2927 | 15 |
427.3259 | 2.360216 | 216.5133 | 0.2272 | 0.2132 | 0.2207 | −0.3305 | 21 |
464.4795 | 1.767456 | 242.0562 | 0.2469 | 0.1596 | 0.2467 | −0.3266 | 20 |
250.7642 | 1.627584 | 190.1616 | 0.1333 | 0.1470 | 0.1938 | −0.2371 | 7 |
363.342 | 1.717272 | 193.6079 | 0.1932 | 0.1551 | 0.1973 | −0.2728 | 13 |
270.5931 | 1.893312 | 155.181 | 0.1439 | 0.1710 | 0.1582 | −0.2365 | 6 |
360.6416 | 2.016965 | 192.6746 | 0.1917 | 0.1822 | 0.1964 | −0.2851 | 14 |
409.7601 | 1.924486 | 196.3889 | 0.2178 | 0.1738 | 0.2002 | −0.2959 | 16 |
447.6368 | 1.830473 | 211.6454 | 0.2380 | 0.1653 | 0.2157 | −0.3095 | 18 |
396.0915 | 1.983618 | 204.6936 | 0.2106 | 0.1791 | 0.2086 | −0.2992 | 17 |
437.9675 | 2.946243 | 215.5425 | 0.2328 | 0.2661 | 0.2197 | −0.3593 | 26 |
174.4423 | 1.914002 | 128.1041 | 0.0927 | 0.1729 | 0.1306 | −0.1981 | 2 |
220.7251 | 2.050069 | 143.7265 | 0.1173 | 0.1851 | 0.1465 | −0.2245 | 5 |
142.7404 | 1.655947 | 83.77385 | 0.0759 | 0.1495 | 0.0854 | −0.1554 | 1 |
299.3917 | 2.214356 | 170.1335 | 0.1592 | 0.2000 | 0.1734 | −0.2663 | 11 |
260.6497 | 1.569603 | 158.5022 | 0.1386 | 0.1418 | 0.1615 | −0.2209 | 4 |
325.648 | 2.052732 | 137.5602 | 0.1731 | 0.1854 | 0.1402 | −0.2494 | 10 |
469.7263 | 2.047881 | 224.6752 | 0.2497 | 0.1849 | 0.2290 | −0.3318 | 22 |
207.0041 | 1.973061 | 141.2001 | 0.1101 | 0.1782 | 0.1439 | −0.2161 | 3 |
246.1514 | 2.76224 | 154.44 | 0.1309 | 0.2495 | 0.1574 | −0.2689 | 12 |
425.7669 | 2.531105 | 214.1387 | 0.2264 | 0.2286 | 0.2182 | −0.3366 | 23 |
436.1839 | 2.665395 | 213.5229 | 0.2319 | 0.2407 | 0.2176 | −0.3451 | 24 |
444.4571 | 2.54873 | 227.5397 | 0.2363 | 0.2302 | 0.2319 | −0.3492 | 25 |
Decision Matrix | Normalizing Matrix | ||||||
---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | B | Rank | |||
466.982 | 1.833 | 206.295 | 0.2833 | 0.2386 | 0.2409 | −0.3814 | 27 |
416.010 | 1.601 | 185.731 | 0.2524 | 0.2083 | 0.2168 | −0.3388 | 24 |
275.566 | 0.881 | 184.549 | 0.1672 | 0.1146 | 0.2155 | −0.2486 | 8 |
218.882 | 1.505 | 129.479 | 0.1328 | 0.1959 | 0.1512 | −0.2399 | 6 |
341.841 | 1.431 | 170.509 | 0.2074 | 0.1862 | 0.1991 | −0.2964 | 16 |
428.187 | 1.643 | 187.083 | 0.2598 | 0.2139 | 0.2184 | −0.3460 | 26 |
420.214 | 1.231 | 209.147 | 0.2549 | 0.1602 | 0.2442 | −0.3296 | 21 |
245.700 | 1.131 | 173.671 | 0.1491 | 0.1472 | 0.2028 | −0.2495 | 9 |
322.866 | 1.193 | 167.294 | 0.1959 | 0.1552 | 0.1953 | −0.2732 | 13 |
251.789 | 1.318 | 134.084 | 0.1528 | 0.1716 | 0.1565 | −0.2404 | 7 |
329.283 | 1.410 | 166.504 | 0.1998 | 0.1835 | 0.1944 | −0.2889 | 14 |
381.823 | 1.338 | 169.741 | 0.2316 | 0.1741 | 0.1982 | −0.3020 | 17 |
408.718 | 1.281 | 182.915 | 0.2480 | 0.1667 | 0.2136 | −0.3141 | 18 |
327.195 | 1.381 | 176.862 | 0.1985 | 0.1797 | 0.2065 | −0.2923 | 15 |
352.906 | 2.061 | 168.371 | 0.2141 | 0.2683 | 0.1966 | −0.3395 | 25 |
159.859 | 1.330 | 110.731 | 0.0970 | 0.1731 | 0.1293 | −0.1997 | 3 |
185.999 | 1.431 | 124.199 | 0.1128 | 0.1863 | 0.1450 | −0.2221 | 5 |
117.917 | 1.151 | 72.428 | 0.0715 | 0.1498 | 0.0846 | −0.1530 | 1 |
247.324 | 1.542 | 147.002 | 0.1500 | 0.2007 | 0.1716 | −0.2612 | 11 |
215.319 | 1.090 | 98.396 | 0.1306 | 0.1418 | 0.1149 | −0.1937 | 2 |
302.967 | 1.436 | 128.114 | 0.1838 | 0.1868 | 0.1496 | −0.2601 | 10 |
388.041 | 1.426 | 194.190 | 0.2354 | 0.1856 | 0.2267 | −0.3239 | 19 |
171.010 | 1.371 | 122.044 | 0.1037 | 0.1785 | 0.1425 | −0.2124 | 4 |
203.345 | 1.924 | 133.458 | 0.1234 | 0.2504 | 0.1558 | −0.2648 | 12 |
351.721 | 1.763 | 185.077 | 0.2134 | 0.2294 | 0.2161 | −0.3295 | 20 |
360.343 | 1.864 | 184.502 | 0.2186 | 0.2426 | 0.2154 | −0.3383 | 23 |
310.181 | 1.683 | 229.770 | 0.1882 | 0.2190 | 0.2683 | −0.3377 | 22 |
Decision Matrix | Normalizing Matrix | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | u | r | Q | Rank | |||
511.4568 | 2.63064 | 238.717 | 0.2719 | 0.2376 | 0.2433 | −0.5797 | −0.1932 | 1.0000 | 27 |
461.075 | 2.29599 | 195.552 | 0.2451 | 0.2074 | 0.1993 | −0.5798 | −0.1932 | 0.7763 | 21 |
304.0594 | 1.426832 | 198.8272 | 0.1617 | 0.1289 | 0.2026 | −0.5800 | −0.1933 | 0.4232 | 10 |
247.841 | 2.15581 | 149.8645 | 0.1318 | 0.1947 | 0.1527 | −0.5800 | −0.1933 | 0.3750 | 9 |
374.3974 | 2.051186 | 197.3411 | 0.1990 | 0.1852 | 0.2011 | −0.5799 | −0.1933 | 0.5214 | 14 |
427.3259 | 2.360216 | 216.5133 | 0.2272 | 0.2132 | 0.2207 | −0.5798 | −0.1933 | 0.7134 | 19 |
464.4795 | 1.767456 | 242.0562 | 0.2469 | 0.1596 | 0.2467 | −0.5798 | −0.1932 | 0.7853 | 22 |
250.7642 | 1.627584 | 190.1616 | 0.1333 | 0.1470 | 0.1938 | −0.5800 | −0.1933 | 0.3656 | 8 |
363.342 | 1.717272 | 193.6079 | 0.1932 | 0.1551 | 0.1973 | −0.5800 | −0.1933 | 0.4608 | 12 |
270.5931 | 1.893312 | 155.181 | 0.1439 | 0.1710 | 0.1582 | −0.5801 | −0.1933 | 0.2711 | 5 |
360.6416 | 2.016965 | 192.6746 | 0.1917 | 0.1822 | 0.1964 | −0.5799 | −0.1933 | 0.4848 | 13 |
409.7601 | 1.924486 | 196.3889 | 0.2178 | 0.1738 | 0.2002 | −0.5799 | −0.1933 | 0.5970 | 16 |
447.6368 | 1.830473 | 211.6454 | 0.2380 | 0.1653 | 0.2157 | −0.5799 | −0.1932 | 0.7100 | 18 |
396.0915 | 1.983618 | 204.6936 | 0.2106 | 0.1791 | 0.2086 | −0.5799 | −0.1933 | 0.5747 | 15 |
437.9675 | 2.946243 | 215.5425 | 0.2328 | 0.2661 | 0.2197 | −0.5797 | −0.1932 | 0.9375 | 26 |
174.4423 | 1.914002 | 128.1041 | 0.0927 | 0.1729 | 0.1306 | −0.5802 | −0.1933 | 0.1918 | 2 |
220.7251 | 2.050069 | 143.7265 | 0.1173 | 0.1851 | 0.1465 | −0.5801 | −0.1933 | 0.3017 | 6 |
142.7404 | 1.655947 | 83.77385 | 0.0759 | 0.1495 | 0.0854 | −0.5803 | −0.1934 | 0.0000 | 1 |
299.3917 | 2.214356 | 170.1335 | 0.1592 | 0.2000 | 0.1734 | −0.5800 | −0.1933 | 0.4569 | 11 |
260.6497 | 1.569603 | 158.5022 | 0.1386 | 0.1418 | 0.1615 | −0.5801 | −0.1933 | 0.1972 | 3 |
325.648 | 2.052732 | 137.5602 | 0.1731 | 0.1854 | 0.1402 | −0.5800 | −0.1933 | 0.3590 | 7 |
469.7263 | 2.047881 | 224.6752 | 0.2497 | 0.1849 | 0.2290 | −0.5798 | −0.1932 | 0.8085 | 25 |
207.0041 | 1.973061 | 141.2001 | 0.1101 | 0.1782 | 0.1439 | −0.5801 | −0.1933 | 0.2543 | 4 |
246.1514 | 2.76224 | 154.44 | 0.1309 | 0.2495 | 0.1574 | −0.5800 | −0.1932 | 0.6650 | 17 |
425.7669 | 2.531105 | 214.1387 | 0.2264 | 0.2286 | 0.2182 | −0.5798 | −0.1933 | 0.7329 | 20 |
436.1839 | 2.665395 | 213.5229 | 0.2319 | 0.2407 | 0.2176 | −0.5798 | −0.1932 | 0.8017 | 24 |
444.4571 | 2.54873 | 227.5397 | 0.2363 | 0.2302 | 0.2319 | −0.5797 | −0.1932 | 0.7929 | 23 |
Decision Matrix | Normalizing Matrix | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | u | r | Q | Rank | |||
466.982 | 1.833 | 206.295 | 0.2833 | 0.2386 | 0.2409 | −0.5797 | −0.1932 | 1.0000 | 27 |
416.010 | 1.601 | 185.731 | 0.2524 | 0.2083 | 0.2168 | −0.5798 | −0.1932 | 0.7975 | 23 |
275.566 | 0.881 | 184.549 | 0.1672 | 0.1146 | 0.2155 | −0.5800 | −0.1933 | 0.4698 | 12 |
218.882 | 1.505 | 129.479 | 0.1328 | 0.1959 | 0.1512 | −0.5800 | −0.1933 | 0.3816 | 7 |
341.841 | 1.431 | 170.509 | 0.2074 | 0.1862 | 0.1991 | −0.5799 | −0.1933 | 0.5456 | 15 |
428.187 | 1.643 | 187.083 | 0.2598 | 0.2139 | 0.2184 | −0.5798 | −0.1932 | 0.8395 | 24 |
420.214 | 1.231 | 209.147 | 0.2549 | 0.1602 | 0.2442 | −0.5798 | −0.1932 | 0.7865 | 22 |
245.700 | 1.131 | 173.671 | 0.1491 | 0.1472 | 0.2028 | −0.5800 | −0.1933 | 0.4268 | 9 |
322.866 | 1.193 | 167.294 | 0.1959 | 0.1552 | 0.1953 | −0.5800 | −0.1933 | 0.4543 | 11 |
251.789 | 1.318 | 134.084 | 0.1528 | 0.1716 | 0.1565 | −0.5800 | −0.1933 | 0.2966 | 5 |
329.283 | 1.410 | 166.504 | 0.1998 | 0.1835 | 0.1944 | −0.5799 | −0.1933 | 0.5023 | 13 |
381.823 | 1.338 | 169.741 | 0.2316 | 0.1741 | 0.1982 | −0.5799 | −0.1932 | 0.6436 | 17 |
408.718 | 1.281 | 182.915 | 0.2480 | 0.1667 | 0.2136 | −0.5798 | −0.1932 | 0.7278 | 20 |
327.195 | 1.381 | 176.862 | 0.1985 | 0.1797 | 0.2065 | −0.5799 | −0.1933 | 0.5337 | 14 |
352.906 | 2.061 | 168.371 | 0.2141 | 0.2683 | 0.1966 | −0.5798 | −0.1932 | 0.8551 | 26 |
159.859 | 1.330 | 110.731 | 0.0970 | 0.1731 | 0.1293 | −0.5802 | −0.1933 | 0.2131 | 3 |
185.999 | 1.431 | 124.199 | 0.1128 | 0.1863 | 0.1450 | −0.5801 | −0.1933 | 0.3083 | 6 |
117.917 | 1.151 | 72.428 | 0.0715 | 0.1498 | 0.0846 | −0.5803 | −0.1934 | 0.0000 | 1 |
247.324 | 1.542 | 147.002 | 0.1500 | 0.2007 | 0.1716 | −0.5800 | −0.1933 | 0.4450 | 10 |
215.319 | 1.090 | 98.396 | 0.1306 | 0.1418 | 0.1149 | −0.5802 | −0.1934 | 0.0891 | 2 |
302.967 | 1.436 | 128.114 | 0.1838 | 0.1868 | 0.1496 | −0.5800 | −0.1933 | 0.3937 | 8 |
388.041 | 1.426 | 194.190 | 0.2354 | 0.1856 | 0.2267 | −0.5798 | −0.1932 | 0.7049 | 19 |
171.010 | 1.371 | 122.044 | 0.1037 | 0.1785 | 0.1425 | −0.5801 | −0.1933 | 0.2597 | 4 |
203.345 | 1.924 | 133.458 | 0.1234 | 0.2504 | 0.1558 | −0.5800 | −0.1932 | 0.6285 | 16 |
351.721 | 1.763 | 185.077 | 0.2134 | 0.2294 | 0.2161 | −0.5798 | −0.1933 | 0.6960 | 18 |
360.343 | 1.864 | 184.502 | 0.2186 | 0.2426 | 0.2154 | −0.5798 | −0.1932 | 0.7620 | 21 |
310.181 | 1.683 | 229.770 | 0.1882 | 0.2190 | 0.2683 | −0.5798 | −0.1932 | 0.8513 | 25 |
Decision Matrix | Normalizing Matrix | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | S+ | S− | Ri | Rank | |||
511.4568 | 2.63064 | 238.717 | 0.2719 | 0.2376 | 0.2433 | 0.1371 | 0.0144 | 0.095 | 27 |
461.075 | 2.29599 | 195.552 | 0.2451 | 0.2074 | 0.1993 | 0.1093 | 0.0400 | 0.268 | 21 |
304.0594 | 1.426832 | 198.8272 | 0.1617 | 0.1289 | 0.2026 | 0.0726 | 0.0907 | 0.555 | 10 |
247.841 | 2.15581 | 149.8645 | 0.1318 | 0.1947 | 0.1527 | 0.0548 | 0.0916 | 0.626 | 7 |
374.3974 | 2.051186 | 197.3411 | 0.1990 | 0.1852 | 0.2011 | 0.0891 | 0.0590 | 0.398 | 15 |
427.3259 | 2.360216 | 216.5133 | 0.2272 | 0.2132 | 0.2207 | 0.1099 | 0.0370 | 0.252 | 22 |
464.4795 | 1.767456 | 242.0562 | 0.2469 | 0.1596 | 0.2467 | 0.1186 | 0.0547 | 0.316 | 19 |
250.7642 | 1.627584 | 190.1616 | 0.1333 | 0.1470 | 0.1938 | 0.0620 | 0.0951 | 0.605 | 8 |
363.342 | 1.717272 | 193.6079 | 0.1932 | 0.1551 | 0.1973 | 0.0821 | 0.0724 | 0.468 | 13 |
270.5931 | 1.893312 | 155.181 | 0.1439 | 0.1710 | 0.1582 | 0.0541 | 0.0912 | 0.628 | 6 |
360.6416 | 2.016965 | 192.6746 | 0.1917 | 0.1822 | 0.1964 | 0.0845 | 0.0633 | 0.428 | 14 |
409.7601 | 1.924486 | 196.3889 | 0.2178 | 0.1738 | 0.2002 | 0.0940 | 0.0583 | 0.383 | 16 |
447.6368 | 1.830473 | 211.6454 | 0.2380 | 0.1653 | 0.2157 | 0.1056 | 0.0554 | 0.344 | 18 |
396.0915 | 1.983618 | 204.6936 | 0.2106 | 0.1791 | 0.2086 | 0.0947 | 0.0565 | 0.374 | 17 |
437.9675 | 2.946243 | 215.5425 | 0.2328 | 0.2661 | 0.2197 | 0.1240 | 0.0238 | 0.161 | 26 |
174.4423 | 1.914002 | 128.1041 | 0.0927 | 0.1729 | 0.1306 | 0.0326 | 0.1165 | 0.781 | 2 |
220.7251 | 2.050069 | 143.7265 | 0.1173 | 0.1851 | 0.1465 | 0.0464 | 0.1006 | 0.684 | 4 |
142.7404 | 1.655947 | 83.77385 | 0.0759 | 0.1495 | 0.0854 | 0.0103 | 0.1397 | 0.931 | 1 |
299.3917 | 2.214356 | 170.1335 | 0.1592 | 0.2000 | 0.1734 | 0.0703 | 0.0749 | 0.516 | 12 |
260.6497 | 1.569603 | 158.5022 | 0.1386 | 0.1418 | 0.1615 | 0.0497 | 0.1006 | 0.669 | 5 |
325.648 | 2.052732 | 137.5602 | 0.1731 | 0.1854 | 0.1402 | 0.0626 | 0.0831 | 0.570 | 9 |
469.7263 | 2.047881 | 224.6752 | 0.2497 | 0.1849 | 0.2290 | 0.1162 | 0.0430 | 0.270 | 20 |
207.0041 | 1.973061 | 141.2001 | 0.1101 | 0.1782 | 0.1439 | 0.0419 | 0.1055 | 0.716 | 3 |
246.1514 | 2.76224 | 154.44 | 0.1309 | 0.2495 | 0.1574 | 0.0754 | 0.0839 | 0.527 | 11 |
425.7669 | 2.531105 | 214.1387 | 0.2264 | 0.2286 | 0.2182 | 0.1121 | 0.0328 | 0.226 | 23 |
436.1839 | 2.665395 | 213.5229 | 0.2319 | 0.2407 | 0.2176 | 0.1165 | 0.0278 | 0.193 | 24 |
444.4571 | 2.54873 | 227.5397 | 0.2363 | 0.2302 | 0.2319 | 0.1199 | 0.0263 | 0.180 | 25 |
Decision Matrix | Normalizing Matrix | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cutting Force (N) | Surface Rough Ness (µm) | Temperature (°C) | S+ | S− | Ri | Rank | |||
466.982 | 1.833 | 206.295 | 0.2833 | 0.2386 | 0.2409 | 0.1455 | 0.0202 | 0.122 | 27 |
416.010 | 1.601 | 185.731 | 0.2524 | 0.2083 | 0.2168 | 0.1214 | 0.0424 | 0.259 | 25 |
275.566 | 0.881 | 184.549 | 0.1672 | 0.1146 | 0.2155 | 0.0811 | 0.0998 | 0.552 | 9 |
218.882 | 1.505 | 129.479 | 0.1328 | 0.1959 | 0.1512 | 0.0608 | 0.1020 | 0.626 | 6 |
341.841 | 1.431 | 170.509 | 0.2074 | 0.1862 | 0.1991 | 0.0958 | 0.0657 | 0.407 | 16 |
428.187 | 1.643 | 187.083 | 0.2598 | 0.2139 | 0.2184 | 0.1257 | 0.0387 | 0.235 | 26 |
420.214 | 1.231 | 209.147 | 0.2549 | 0.1602 | 0.2442 | 0.1237 | 0.0572 | 0.316 | 19 |
245.700 | 1.131 | 173.671 | 0.1491 | 0.1472 | 0.2028 | 0.0725 | 0.0961 | 0.570 | 8 |
322.866 | 1.193 | 167.294 | 0.1959 | 0.1552 | 0.1953 | 0.0857 | 0.0802 | 0.484 | 13 |
251.789 | 1.318 | 134.084 | 0.1528 | 0.1716 | 0.1565 | 0.0613 | 0.0986 | 0.617 | 7 |
329.283 | 1.410 | 166.504 | 0.1998 | 0.1835 | 0.1944 | 0.0912 | 0.0700 | 0.434 | 14 |
381.823 | 1.338 | 169.741 | 0.2316 | 0.1741 | 0.1982 | 0.1026 | 0.0641 | 0.385 | 17 |
408.718 | 1.281 | 182.915 | 0.2480 | 0.1667 | 0.2136 | 0.1123 | 0.0603 | 0.349 | 18 |
327.195 | 1.381 | 176.862 | 0.1985 | 0.1797 | 0.2065 | 0.0938 | 0.0687 | 0.423 | 15 |
352.906 | 2.061 | 168.371 | 0.2141 | 0.2683 | 0.1966 | 0.1188 | 0.0498 | 0.295 | 23 |
159.859 | 1.330 | 110.731 | 0.0970 | 0.1731 | 0.1293 | 0.0390 | 0.1256 | 0.763 | 3 |
185.999 | 1.431 | 124.199 | 0.1128 | 0.1863 | 0.1450 | 0.0512 | 0.1129 | 0.688 | 5 |
117.917 | 1.151 | 72.428 | 0.0715 | 0.1498 | 0.0846 | 0.0176 | 0.1522 | 0.896 | 1 |
247.324 | 1.542 | 147.002 | 0.1500 | 0.2007 | 0.1716 | 0.0727 | 0.0890 | 0.550 | 10 |
215.319 | 1.090 | 98.396 | 0.1306 | 0.1418 | 0.1149 | 0.0359 | 0.1253 | 0.777 | 2 |
302.967 | 1.436 | 128.114 | 0.1838 | 0.1868 | 0.1496 | 0.0742 | 0.0875 | 0.541 | 12 |
388.041 | 1.426 | 194.190 | 0.2354 | 0.1856 | 0.2267 | 0.1141 | 0.0521 | 0.313 | 20 |
171.010 | 1.371 | 122.044 | 0.1037 | 0.1785 | 0.1425 | 0.0460 | 0.1184 | 0.720 | 4 |
203.345 | 1.924 | 133.458 | 0.1234 | 0.2504 | 0.1558 | 0.0809 | 0.0982 | 0.548 | 11 |
351.721 | 1.763 | 185.077 | 0.2134 | 0.2294 | 0.2161 | 0.1125 | 0.0477 | 0.298 | 22 |
360.343 | 1.864 | 184.502 | 0.2186 | 0.2426 | 0.2154 | 0.1174 | 0.0437 | 0.271 | 24 |
310.181 | 1.683 | 229.770 | 0.1882 | 0.2190 | 0.2683 | 0.1207 | 0.0536 | 0.307 | 21 |
References
- Touggui, Y.; Uysal, A.; Emiroglu, U.; Belhadi, S.; Temmar, M. Evaluation of MQL Performances Using Various Nanofluids in Turning of AISI 304 Stainless Steel. Int. J. Adv. Manuf. Technol. 2021, 115, 3983–3997. [Google Scholar] [CrossRef]
- Liu, N.; Zou, X.; Yuan, J.; Jiang, H.; Zhang, Y.; Chen, Y. Optimization of MQL Turning Process Considering the Distribution and Control of Cutting Fluid Mist Particles. Int. J. Adv. Manuf. Technol. 2021, 116, 1233–1246. [Google Scholar] [CrossRef]
- Mia, M.; Gupta, M.K.; Singh, G.; Królczyk, G.; Pimenov, D.Y. An Approach to Cleaner Production for Machining Hardened Steel Using Different Cooling-Lubrication Conditions. J. Clean. Prod. 2018, 187, 1069–1081. [Google Scholar] [CrossRef]
- Gupta, M.K.; Khan, A.M.; Song, Q.; Liu, Z.; Khalid, Q.S.; Jamil, M.; Kuntoğlu, M.; Usca, Ü.A.; Sarıkaya, M.; Pimenov, D.Y. A Review on Conventional and Advanced Minimum Quantity Lubrication Approaches on Performance Measures of Grinding Process. Int. J. Adv. Manuf. Technol. 2021, 117, 729–750. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H. Towards Sustainable Machining of Inconel 718 Using Nano-Fluid Minimum Quantity Lubrication. J. Manuf. Mater. Process. 2018, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Sen, B.; Gupta, M.K.; Mia, M.; Pimenov, D.Y.; Mikolajczyk, T. Performance Assessment of Minimum Quantity Castor-Palm Oil Mixtures in Hard-Milling Operation. Materials 2021, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Duc, T.M.; Long, T.T.; Chien, T.Q. Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Li, C.; Dong, L.; Yin, Q. Experimental Evaluation of the Lubrication Performances of Different Nanofluids for Minimum Quantity Lubrication (MQL) in Milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 101, 2621–2632. [Google Scholar] [CrossRef]
- Das, A.; Das, S.R.; Patel, S.K.; Biswal, B.B. Effect of MQL and Nanofluid on the Machinability Aspects of Hardened Alloy Steel. Mach. Sci. Technol. 2020, 24, 291–320. [Google Scholar] [CrossRef]
- Do, T.-V.; Hsu, Q.-C. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel. Appl. Sci. 2016, 6, 83. [Google Scholar] [CrossRef]
- Dubey, V.; Sharma, A.K.; Singh, R.K. A Technological Review on Temperature Measurement Techniques in Various Machining Processes. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 55–67. [Google Scholar] [CrossRef]
- Dubey, V.; Sharma, A.K.; Singh, R.K. Study of Various Cooling Methodology Used in Machining Processes. Mater. Today Proc. 2020, 21, 1572–1576. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sood, P.K.; Sharma, V.S. Optimization of Machining Parameters and Cutting Fluids during Nano-Fluid Based Minimum Quantity Lubrication Turning of Titanium Alloy by Using Evolutionary Techniques. J. Clean. Prod. 2016, 135, 1276–1288. [Google Scholar] [CrossRef]
- Saini, A.; Dhiman, S.; Sharma, R.; Setia, S. Experimental Estimation and Optimization of Process Parameters under Minimum Quantity Lubrication and Dry Turning of AISI-4340 with Different Carbide Inserts. J. Mech. Sci. Technol. 2014, 28, 2307–2318. [Google Scholar] [CrossRef]
- Singh, G.; Pruncu, C.I.; Gupta, M.K.; Mia, M.; Khan, A.M.; Jamil, M.; Pimenov, D.Y.; Sen, B.; Sharma, V.S. Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms. Materials 2019, 12, 999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, S.; Gong, Y.; Yang, Y.; Wang, W.; Liang, C.; Han, B. An Investigation of Carbon Nanofluid Minimum Quantity Lubrication for Grinding Unidirectional Carbon Fibre-Reinforced Ceramic Matrix Composites. J. Clean. Prod. 2020, 249, 119353. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A Review on Hybrid Nanofluids: Recent Research, Development and Applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Pandey, K.; Dubey, V.; Sharma, A.K.; Mital, A. State of Art on Tribological Behaviour of Nanoparticle Enriched Cutting Fluid. In Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 26, pp. 2586–2589. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, A.M.; Hegab, H.; Gong, L.; Mia, M.; Gupta, M.K.; He, N. Effects of Hybrid Al2O3-CNT Nanofluids and Cryogenic Cooling on Machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 2019, 102, 3895–3909. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Zhang, Y.; Jia, D.; Li, B.; Wang, Y.; Yang, M.; Hou, Y.; Zhang, X. Performances of Al2O3/SiC Hybrid Nanofluids in Minimum-Quantity Lubrication Grinding. Int. J. Adv. Manuf. Technol. 2016, 86, 3427–3441. [Google Scholar] [CrossRef]
- Gugulothu, S.; Pasam, V.K. Experimental Investigation to Study the Performance of CNT/MoS2 Hybrid Nanofluid in Turning of AISI 1040 Stee. Aust. J. Mech. Eng. 2020, 1–11. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, S.; Aravindan, S. Experimental Investigations on Surface Grinding of Silicon Nitride Subjected to Mono and Hybrid Nanofluids. Ceram. Int. 2019, 45, 17447–17466. [Google Scholar] [CrossRef]
- Abbas, A.T.; Pimenov, D.Y.; Erdakov, I.N.; Mikolajczyk, T.; El Danaf, E.A.; Taha, M.A. Minimization of Turning Time for High-Strength Steel with a given Surface Roughness Using the Edgeworth–Pareto Optimization Method. Int. J. Adv. Manuf. Technol. 2017, 93, 2375–2392. [Google Scholar] [CrossRef]
- Abbas, A.T.; Gupta, M.K.; Soliman, M.S.; Mia, M.; Hegab, H.; Luqman, M.; Pimenov, D.Y. Sustainability Assessment Associated with Surface Roughness and Power Consumption Characteristics in Nanofluid MQL-Assisted Turning of AISI 1045 Steel. Int. J. Adv. Manuf. Technol. 2019, 105, 1311–1327. [Google Scholar] [CrossRef]
- Alajmi, M.S.; Almeshal, A.M. Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method. Materials 2020, 13, 2986. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, G.; Zhao, Y.; Meng, J.; Li, C. Multi-Objective Optimization of Cutting Parameters in Turning AISI 304 Austenitic Stainless Steel. Metals 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.M.; Jamil, M.; Mia, M.; Pimenov, D.Y.; Gasiyarov, V.R.; Gupta, M.K.; He, N. Multi-Objective Optimization for Grinding of AISI D2 Steel with Al2O3 Wheel under MQL. Materials 2018, 11, 2269. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Z.; Liang, X. Tool Wear, Surface Topography, and Multi-Objective Optimization of Cutting Parameters during Machining AISI 304 Austenitic Stainless Steel Flange. Metals 2019, 9, 972. [Google Scholar] [CrossRef] [Green Version]
- Kilickap, E.; Yardimeden, A.; Çelik, Y.H. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S. Appl. Sci. 2017, 7, 1064. [Google Scholar] [CrossRef] [Green Version]
- Lukic, D.; Cep, R.; Vukman, J.; Antic, A.; Djurdjev, M.; Milosevic, M. Multi-Criteria Selection of the Optimal Parameters for High-Speed Machining of Aluminum Alloy Al7075 Thin-Walled Parts. Metals 2020, 10, 1570. [Google Scholar] [CrossRef]
- Prasad, S.; Ravindranath, D.K.; Devakumar, D.M.L.S. Experimental Study and Optimization in Modified Air Abrasive Jet Machining on Nickel-233 Alloy Using MCDM Techniques. Manuf. Technol. 2019, 19, 1010–1019. [Google Scholar] [CrossRef]
- Majumder, H.; Saha, A. Application of MCDM Based Hybrid Optimization Tool during Turning of ASTM A588. Decis. Sci. Lett. 2018, 7, 143–156. [Google Scholar] [CrossRef]
- Khan, A.; Maity, K. Parametric Optimization of Some Non-Conventional Machining Processes Using Moora Method. Int. J. Eng. Res. Africa 2016, 20, 19–40. [Google Scholar] [CrossRef]
- Khan, A.; Maity, K. Estimation of Optimal Cutting Conditions during Machining of CP-Ti Grade 2 in Fuzzy–VIKOR Context. Grey Syst. Theory Appl. 2020, 10, 293–310. [Google Scholar] [CrossRef]
- Khan, A.; Maity, K. Application of MCDM-Based TOPSIS Method for the Optimization of Multi Quality Characteristics of Modern Manufacturing Processes. Int. J. Eng. Res. Africa 2016, 23, 33–51. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Yazdani, M. Comparative Analysis of MCDM Techniques for EDM of SiC/A359 Composite. Arab. J. Sci. Eng. 2018, 43, 1093–1102. [Google Scholar] [CrossRef]
- Yuvaraj, N.; Pradeep Kumar, M. Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Process. 2015, 30, 882–889. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Progress of Nanofluid Application in Machining: A Review. Materials and Manufacturing Processes 2015, 7, 30. [Google Scholar] [CrossRef]
- Sen, B.; Mia, M.; Gupta, M.K.; Rahman, M.A.; Mandal, U.K.; Mondal, S.P. Influence of Al2O3 and Palm Oil–Mixed Nano-Fluid on Machining Performances of Inconel-690: IF-THEN Rules–Based FIS Model in Eco-Benign Milling. Int. J. Adv. Manuf. Technol. 2019, 3389–3403. [Google Scholar] [CrossRef]
- Majumder, H.; Maity, K. Optimization of Machining Condition in WEDM for Titanium Grade 6 Using MOORA Coupled with PCA–A Multivariate Hybrid Approach. J. Adv. Manuf. Syst. 2017, 16, 81–99. [Google Scholar] [CrossRef]
- Abhang, L.B.; Iqbal, M.; Hameedullah, M. Optimization of Machining Process Parameters Using Moora Method. Defect Diffus. Forum 2020, 402, 81–89. [Google Scholar] [CrossRef]
- Gangil, M.; Pradhan, M.K. Optimization the Machining Parameters by Using VIKOR Method during EDM Process of Titanium Alloy. Mater. Today Proc. 2018, 5, 7486–7495. [Google Scholar] [CrossRef]
- Bhuyan, R.K.; Routara, B.C. Optimization the Machining Parameters by Using VIKOR and Entropy Weight Method during EDM Process of Al–18% SiCp Metal Matrix Composite. Decis. Sci. Lett. 2016, 5, 269–282. [Google Scholar] [CrossRef]
- Kakaravada, I.; Mahamani, A.; Pandurangadu, V. Optimization of Machining Parameters Using Entropy-VIKOR Method in Drilling of A356-TiB2/TiC in-Situ Composites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 390. [Google Scholar] [CrossRef]
- Thirumalai, R.; Seenivasan, M.; Panneerselvam, K. Experimental Investigation and Multi Response Optimization of Turning Process Parameters for Inconel 718 Using TOPSIS Approach. Mater. Today Proc. 2021, 45, 467–472. [Google Scholar] [CrossRef]
- Rajamanickam, S.; Prasanna, J.; Chandrasekhara Sastry, C. Analysis of High Aspect Ratio Small Holes in Rapid Electrical Discharge Machining of Superalloys Using Taguchi and TOPSIS. J. Brazilian Soc. Mech. Sci. Eng. 2020, 42, 1–13. [Google Scholar] [CrossRef]
- Singaravel, B.; Selvaraj, T. Optimizacija Parametara Obrade u Postupcima Tokarenja Primjenom Kombinacije TOPSIS i AHP Metode. Teh. Vjesn. 2015, 22, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of Industrial Arc Welding Robot with TOPSIS and Entropy MCDM Techniques. Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Ic, Y.T.; Saraloğlu Güler, E.; Cabbaroğlu, C.; Dilan Yüksel, E.; Maide Sağlam, H. Optimisation of Cutting Parameters for Minimizing Carbon Emission and Maximising Cutting Quality in Turning Process. Int. J. Prod. Res. 2018, 56, 4035–4055. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Li, J.; Lu, L.; Li, N. Evaluation of Cutting Force and Cutting Temperature in Milling Carbon Fiber-Reinforced Polymer Composites. Int. J. Adv. Manuf. Technol. 2016, 82, 1517–1525. [Google Scholar] [CrossRef]
Elements | S | P | C | Mo | Cu | Si | Mn | Ni | Cr | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Weight % | 0.02 | 0.027 | 0.065 | 0.13 | 0.14 | 0.3 | 1.78 | 8.1 | 18.2 | 71.2 |
Levels/Factors | −1 | 0 | 1 |
---|---|---|---|
Depth of cut (mm) | 0.6 | 0.9 | 1.2 |
Feed rate (mm/rev) | 0.08 | 0.12 | 0.16 |
Cutting speed (m/min) | 60 | 90 | 120 |
Nanofluid concentration (wt.%) | 0.5 | 1.0 | 1.5 |
S.No. | Cutting Speed (m/min) | Feed Rate (mm/rev) | Depth of Cut (mm) | Nanoparticle Concentration (%) |
---|---|---|---|---|
1 | 90 | 0.16 | 1.2 | 1.0 |
2 | 60 | 0.12 | 1.2 | 1.0 |
3 | 120 | 0.12 | 0.9 | 1.5 |
4 | 60 | 0.12 | 0.6 | 1.0 |
5 | 90 | 0.12 | 0.9 | 1.0 |
6 | 60 | 0.12 | 0.9 | 0.5 |
7 | 120 | 0.12 | 1.2 | 1.0 |
8 | 120 | 0.08 | 0.9 | 1.0 |
9 | 90 | 0.08 | 1.2 | 1.0 |
10 | 60 | 0.08 | 0.9 | 1.0 |
11 | 90 | 0.12 | 0.9 | 1.0 |
12 | 120 | 0.12 | 0.9 | 0.5 |
13 | 90 | 0.12 | 1.2 | 1.5 |
14 | 90 | 0.12 | 0.9 | 1.0 |
15 | 60 | 0.16 | 0.9 | 1.0 |
16 | 120 | 0.12 | 0.6 | 1.0 |
17 | 90 | 0.12 | 0.6 | 0.5 |
18 | 90 | 0.08 | 0.6 | 1.0 |
19 | 90 | 0.08 | 0.9 | 0.5 |
20 | 90 | 0.08 | 0.9 | 1.5 |
21 | 60 | 0.12 | 0.9 | 1.5 |
22 | 90 | 0.12 | 1.2 | 0.5 |
23 | 90 | 0.12 | 0.6 | 1.5 |
24 | 90 | 0.16 | 0.6 | 1.0 |
25 | 90 | 0.16 | 0.9 | 1.5 |
26 | 90 | 0.16 | 0.9 | 0.5 |
27 | 120 | 0.16 | 0.9 | 1.0 |
Alumina | Alumina-Graphene | |||||
---|---|---|---|---|---|---|
S. No. | Cutting Force (N) | Surface Roughness (µm) | Temperature (°C) | Cutting Force (N) | Surface Roughness (µm) | Temperature (°C) |
1 | 511.45 | 2.630 | 238.71 | 466.98 | 1.833 | 206.29 |
2 | 461.07 | 2.295 | 195.55 | 416.00 | 1.600 | 185.73 |
3 | 304.05 | 1.426 | 198.82 | 275.56 | 0.880 | 184.54 |
4 | 247.84 | 2.155 | 149.86 | 218.88 | 1.505 | 129.47 |
5 | 374.39 | 2.051 | 197.34 | 341.84 | 1.431 | 170.50 |
6 | 427.32 | 2.360 | 216.51 | 428.18 | 1.643 | 187.08 |
7 | 464.47 | 1.767 | 242.05 | 420.21 | 1.230 | 209.14 |
8 | 250.76 | 1.627 | 190.16 | 245.69 | 1.131 | 173.67 |
9 | 363.34 | 1.717 | 193.60 | 322.86 | 1.192 | 167.29 |
10 | 270.59 | 1.893 | 155.18 | 251.78 | 1.318 | 134.08 |
11 | 360.64 | 2.016 | 192.67 | 329.28 | 1.410 | 166.50 |
12 | 409.76 | 1.924 | 196.38 | 381.82 | 1.337 | 169.74 |
13 | 447.63 | 1.830 | 211.64 | 408.71 | 1.280 | 182.91 |
14 | 396.09 | 1.983 | 204.69 | 327.19 | 1.380 | 176.86 |
15 | 437.96 | 2.946 | 215.54 | 352.90 | 2.061 | 168.37 |
16 | 174.44 | 1.914 | 128.10 | 159.85 | 1.330 | 110.73 |
17 | 220.72 | 2.050 | 143.72 | 185.99 | 1.431 | 124.19 |
18 | 142.74 | 1.655 | 83.77 | 117.91 | 1.151 | 72.427 |
19 | 299.39 | 2.214 | 170.13 | 247.32 | 1.542 | 147.00 |
20 | 260.64 | 1.569 | 158.50 | 215.31 | 1.089 | 98.395 |
21 | 325.64 | 2.052 | 137.56 | 302.96 | 1.435 | 128.11 |
22 | 469.72 | 2.047 | 224.67 | 388.04 | 1.426 | 194.18 |
23 | 207.00 | 1.973 | 141.20 | 171.01 | 1.371 | 122.04 |
24 | 246.15 | 2.762 | 154.44 | 203.34 | 1.924 | 133.45 |
25 | 425.76 | 2.531 | 214.13 | 351.72 | 1.763 | 185.07 |
26 | 436.18 | 2.665 | 213.52 | 360.34 | 1.864 | 184.50 |
27 | 444.45 | 2.548 | 227.53 | 310.18 | 1.682 | 229.77 |
Cutting Force (N) | Surface Roughness (μm) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
Source | p-Value | % Contribution | p-Value | % Contribution | p-Value | % Contribution |
Model | 0.000 | 0.000 | 0.000 | |||
Linear | 0.000 | 0.000 | 0.000 | |||
Vc | 0.175 | 0.44779 | 0.000 | 13.28918 | 0.016 | 2.772098 |
fo | 0.000 | 24.96624 | 0.000 | 62.3849 | 0.000 | 21.2578 |
ap | 0.000 | 65.28413 | 0.574 | 0.104758 | 0.000 | 55.53153 |
np% | 0.005 | 2.551326 | 0.000 | 7.532599 | 0.025 | 2.312737 |
Square | 0.031 | 0.002 | 0.029 | |||
Vc * Vc | 0.651 | 0.04657 | 0.981 | 0.000256 | 0.869 | 0.009924 |
fo * fo | 0.071 | 0.84686 | 0.000 | 7.223191 | 0.288 | 0.436902 |
ap * ap | 0.004 | 2.709664 | 0.755 | 0.03176 | 0.003 | 5.074911 |
np%*np% | 0.782 | 0.017195 | 0.484 | 0.163413 | 0.426 | 0.240518 |
2-Way Interaction | 0.687 | 0.245 | 0.021 | |||
Vc* fo | 0.602 | 0.061974 | 0.562 | 0.111161 | 0.343 | 0.344978 |
Vc * ap | 0.144 | 0.528392 | 0.219 | 0.526352 | 0.013 | 3.042387 |
Vc *np% | 0.936 | 0.001433 | 0.406 | 0.231544 | 0.004 | 4.32489 |
fo * ap | 0.381 | 0.179116 | 0.400 | 0.238459 | 0.294 | 0.426456 |
fo *np% | 0.575 | 0.072005 | 0.039 | 1.668447 | 0.608 | 0.097931 |
ap *np% | 0.868 | 0.006448 | 0.537 | 0.126273 | 0.660 | 0.072077 |
Error | 2.592522 | 3.752084 | 4.243412 | |||
Lack-of-Fit | 0.370 | 2.363612 | 0.076 | 3.693686 | 0.206 | 4.051467 |
Pure Error | 0.22891 | 0.058398 | 0.191683 | |||
Total | 100 | 100 | 100 |
Cutting Force (N) | Surface Roughness (μm) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
Source | p-Value | % Contribution | p-Value | % Contribution | p-Value | % Contribution |
Model | 0.000 | 0.000 | 0.000 | |||
Linear | 0.000 | 0.000 | 0.000 | |||
Vc | 0.122 | 1.163 | 0.000 | 16.293 | 0.016 | 2.772098 |
fo | 0.000 | 15.362 | 0.000 | 57.547 | 0.000 | 21.2578 |
ap | 0.000 | 68.977 | 0.621 | 0.094 | 0.000 | 55.53153 |
np% | 0.028 | 2.624 | 0.000 | 8.498 | 0.025 | 2.312737 |
Square | 0.046 | 0.005 | 0.029 | |||
Vc * Vc | 0.771 | 0.037 | 0.628 | 0.0906 | 0.869 | 0.009924 |
fo * fo | 0.020 | 3.0230 | 0.001 | 6.5418 | 0.288 | 0.436902 |
ap * ap | 0.035 | 2.357 | 0.927 | 0.0030 | 0.003 | 5.074911 |
np%*np% | 0.888 | 0.0084 | 0.434 | 0.240 | 0.426 | 0.240518 |
2-Way Interaction | 0.809 | 0.222 | 3.585 | 0.021 | ||
Vc* fo | 0.562 | 0.149 | 0.283 | 0.462 | 0.343 | 0.344978 |
Vc * ap | 0.324 | 0.443 | 0.276 | 0.478 | 0.013 | 3.042387 |
Vc *np% | 0.763 | 0.039 | 0.170 | 0.781 | 0.004 | 4.32489 |
fo * ap | 0.359 | 0.382 | 0.454 | 0.219 | 0.294 | 0.426456 |
fo *np% | 0.710 | 0.060 | 0.062 | 1.552 | 0.608 | 0.097931 |
ap *np% | 0.573 | 0.141 | 0.625 | 0.092 | 0.660 | 0.072077 |
Error | 5.035 | 4.397 | 4.243412 | |||
Lack-of-Fit | 0.054 | 4.979 | 0.072 | 4.332 | 0.206 | 4.051467 |
Pure Error | 0.055 | 0.064 | 0.191683 | |||
Total | 100 | 100 | 100 |
Response Parameters | Ranks by Different MCDM Techniques | ||||
---|---|---|---|---|---|
Cutting Force (N) | Surface Roughness (µm) | Temperature (°C) | MOORA | VIKOR | TOPSIS |
511.45 | 2.630 | 238.71 | 27 | 27 | 27 |
461.07 | 2.295 | 195.55 | 19 | 21 | 21 |
304.05 | 1.426 | 198.82 | 9 | 10 | 10 |
247.84 | 2.155 | 149.86 | 8 | 9 | 7 |
374.39 | 2.051 | 197.34 | 15 | 14 | 15 |
427.32 | 2.360 | 216.51 | 21 | 19 | 22 |
464.47 | 1.767 | 242.05 | 20 | 22 | 19 |
250.76 | 1.627 | 190.16 | 7 | 8 | 8 |
363.34 | 1.717 | 193.60 | 13 | 12 | 13 |
270.59 | 1.893 | 155.18 | 6 | 5 | 6 |
360.64 | 2.016 | 192.67 | 14 | 13 | 14 |
409.76 | 1.924 | 196.38 | 16 | 16 | 16 |
447.63 | 1.830 | 211.64 | 18 | 18 | 18 |
396.09 | 1.983 | 204.69 | 17 | 15 | 17 |
437.96 | 2.946 | 215.54 | 26 | 26 | 26 |
174.44 | 1.914 | 128.10 | 2 | 2 | 2 |
220.72 | 2.050 | 143.72 | 5 | 6 | 4 |
142.74 | 1.655 | 83.77 | 1 | 1 | 1 |
299.39 | 2.214 | 170.13 | 11 | 11 | 12 |
260.64 | 1.569 | 158.50 | 4 | 3 | 5 |
325.64 | 2.052 | 137.56 | 10 | 7 | 9 |
469.72 | 2.047 | 224.67 | 22 | 25 | 20 |
207.00 | 1.973 | 141.20 | 3 | 4 | 3 |
246.15 | 2.762 | 154.44 | 12 | 17 | 11 |
425.76 | 2.531 | 214.13 | 23 | 20 | 23 |
436.18 | 2.665 | 213.52 | 24 | 24 | 24 |
444.45 | 2.548 | 227.53 | 25 | 23 | 25 |
Response Parameters with (Alumina-Graphene) | Rank by Different MCDM Techniques | ||||
---|---|---|---|---|---|
Cutting Force (N) | Surface Roughness (µm) | Temperature (°C) | MOORA | VIKOR | TOPSIS |
466.98 | 1.833 | 206.29 | 27 | 27 | 27 |
416.01 | 1.601 | 185.73 | 24 | 23 | 25 |
275.56 | 0.881 | 184.54 | 8 | 12 | 9 |
218.88 | 1.505 | 129.47 | 6 | 7 | 6 |
341.84 | 1.431 | 170.50 | 16 | 15 | 16 |
428.18 | 1.643 | 187.08 | 26 | 24 | 26 |
420.21 | 1.231 | 209.14 | 21 | 22 | 19 |
245.70 | 1.131 | 173.67 | 9 | 9 | 8 |
322.86 | 1.193 | 167.29 | 13 | 11 | 13 |
251.78 | 1.318 | 134.08 | 7 | 5 | 7 |
329.28 | 1.410 | 166.50 | 14 | 13 | 14 |
381.82 | 1.338 | 169.74 | 17 | 17 | 17 |
408.71 | 1.281 | 182.91 | 18 | 20 | 18 |
327.19 | 1.381 | 176.86 | 15 | 14 | 15 |
352.90 | 2.061 | 168.37 | 25 | 26 | 23 |
159.85 | 1.330 | 110.73 | 3 | 3 | 3 |
185.99 | 1.431 | 124.19 | 5 | 6 | 5 |
117.91 | 1.151 | 72.42 | 1 | 1 | 1 |
247.32 | 1.542 | 147.00 | 11 | 10 | 10 |
215.31 | 1.090 | 98.39 | 2 | 2 | 2 |
302.96 | 1.436 | 128.11 | 10 | 8 | 12 |
388.04 | 1.426 | 194.19 | 19 | 19 | 20 |
171.01 | 1.371 | 122.04 | 4 | 4 | 4 |
203.34 | 1.924 | 133.45 | 12 | 16 | 11 |
351.72 | 1.763 | 185.07 | 20 | 18 | 22 |
360.34 | 1.864 | 184.50 | 23 | 21 | 24 |
310.18 | 1.683 | 229.77 | 22 | 25 | 21 |
Parameters/Technique | Cutting Speed (mm/min) | Feed Rate (mm/rev) | Depth of Cut (mm) | Np% | CuttingForce (N) | Surface Roughness (μm) | Temperature (°C) | |
---|---|---|---|---|---|---|---|---|
RSM | Alumina | 86.667 | 0.08 | 0.6 | 1.5 | 101.756 | 1.48475 | 83.77 |
Alumina-Graphene | 110.909 | 0.08 | 0.6484 | 1.5 | 92.657 | 0.91186 | 78.766 | |
MOORA | Alumina | 90 | 0.08 | 0.6 | 1.0 | 142.7404 | 1.655947 | 83.77385 |
Alumina-Graphene | 90 | 0.08 | 0.6 | 1.0 | 117.917 | 1.151 | 72.428 | |
VIKOR | Alumina | 90 | 0.08 | 0.6 | 1.0 | 142.7404 | 1.655947 | 83.77385 |
Alumina-Graphene | 90 | 0.08 | 0.6 | 1.0 | 117.917 | 1.151 | 72.428 | |
TOPSIS | Alumina | 90 | 0.08 | 0.6 | 1.0 | 142.7404 | 1.655947 | 83.77385 |
Alumina-Graphene | 90 | 0.08 | 0.6 | 1.0 | 117.917 | 1.151 | 72.428 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, V.; Sharma, A.K.; Vats, P.; Pimenov, D.Y.; Giasin, K.; Chuchala, D. Study of a Multicriterion Decision-Making Approach to the MQL Turning of AISI 304 Steel Using Hybrid Nanocutting Fluid. Materials 2021, 14, 7207. https://doi.org/10.3390/ma14237207
Dubey V, Sharma AK, Vats P, Pimenov DY, Giasin K, Chuchala D. Study of a Multicriterion Decision-Making Approach to the MQL Turning of AISI 304 Steel Using Hybrid Nanocutting Fluid. Materials. 2021; 14(23):7207. https://doi.org/10.3390/ma14237207
Chicago/Turabian StyleDubey, Vineet, Anuj Kumar Sharma, Prameet Vats, Danil Yurievich Pimenov, Khaled Giasin, and Daniel Chuchala. 2021. "Study of a Multicriterion Decision-Making Approach to the MQL Turning of AISI 304 Steel Using Hybrid Nanocutting Fluid" Materials 14, no. 23: 7207. https://doi.org/10.3390/ma14237207
APA StyleDubey, V., Sharma, A. K., Vats, P., Pimenov, D. Y., Giasin, K., & Chuchala, D. (2021). Study of a Multicriterion Decision-Making Approach to the MQL Turning of AISI 304 Steel Using Hybrid Nanocutting Fluid. Materials, 14(23), 7207. https://doi.org/10.3390/ma14237207