Shape Memory Materials from Rubbers
Abstract
:1. Introduction to Rubbers and Properties
2. An Overview of Shape Memory Effect
2.1. Mechanism behind the Shape Memory Effect in Shape Memory Alloys
2.2. Terms Used in Shape Memory Effect
3. Shape Memory Materials of Rubbers
3.1. Natural Rubber (NR) Based Materials with Shape Memory
3.2. Lightly Cross-Linked Shape Memory Natural Rubber
3.3. Synthetic Rubber-Based ShapeMemory Materials
3.4. Rubber Composites with Carbon-Based Fillers
3.5. Composites with Metal and Metal Oxide Fillers
3.6. Composites with Silicon-Based Fillers
3.7. Composites with Biopolymers and Other Biomaterials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- White, J.R.; De, S. Rubber Technologist’s Handbook, 2nd ed.; Rapra Publishers: Shropshire, UK, 2001. [Google Scholar]
- Bhowmick, A.K.; Stephens, H.L. Handbook of Elastomers; Marcel Dekker Inc.: New York, NY, USA, 2001; ISBN 0824703839. [Google Scholar]
- Brydson, J.A. Rubbery Materials and Their Compounds; Elsevier Science Publishers: New York, NY, USA, 1988. [Google Scholar]
- Ismail, H.; Leong, H.C. Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends. Polym. Test. 2001, 20, 509–516. [Google Scholar] [CrossRef]
- White, J.; De, S.K.; Naskar, K. Rubber Technologist’s Handbook; Rapra Publishers: Shropshire, UK, 2009; Volume 2. [Google Scholar]
- Blow, C.M.; Hepburn, C. Rubber Technology and Manufacture, 2nd ed.; Butterworths: London, UK, 1982. [Google Scholar]
- Hoffmann, W. Rubber Technology Handbook; Hanser Publishers: Munich, Germany, 1989. [Google Scholar]
- Morton, M. Rubber Technology; Springer: Berlin, Germany, 1973. [Google Scholar]
- Liu, C.; Qin, H.; Mather, P.T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar] [CrossRef]
- MohdJani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Sun, L.; Huang, W.M.; Ding, Z.; Zhao, Y.; Wang, C.C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012, 33, 577–640. [Google Scholar] [CrossRef]
- Otsuka, K.; Kakeshita, T. Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull. 2002, 27, 91–100. [Google Scholar] [CrossRef]
- Schetky, L.M. Shape-Memory Alloys. Sci. Am. 1979, 241, 74–83. [Google Scholar] [CrossRef]
- Tadaki, T.; Otsuka, K.; Shimizu, K. Shape Memory Alloys. Annu. Rev. Mater. Sci. 1988, 18, 25–45. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 1999, 7, 511–528. [Google Scholar] [CrossRef]
- Paiva, A.; Savi, M.A. An overview of constitutive models for shape memory alloys. Math. Probl. Eng. 2006, 2006, 56876. [Google Scholar] [CrossRef]
- Abubakar, R.A.; Wang, F.; Wang, L. A review on Nitinol shape memory alloy heat engines. Smart Mater. Struct. 2020, 30, 13001. [Google Scholar] [CrossRef]
- Lendlein, A.; Kelch, S. Shape-Memory Polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057. [Google Scholar] [CrossRef]
- Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20–28. [Google Scholar] [CrossRef]
- Hager, M.D.; Bode, S.; Weber, C.; Schubert, U.S. Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 2015, 49–50, 3–33. [Google Scholar] [CrossRef]
- Patel, K.K.; Purohit, R. Improved shape memory and mechanical properties of microwave-induced shape memory polymer/MWCNTs composites. Mater. Today Commun. 2019, 20, 100579. [Google Scholar] [CrossRef]
- Ni, Q.Q.; Zhang, C.S.; Fu, Y.; Dai, G.; Kimura, T. Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos. Struct. 2007, 81, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.M.; Guo, G.L.; Han, K.T.; Huang, P.S.; Huang, Z.L.; Jiang, M.J.; Zou, Y.R. Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape memory bio-nanocomposites. J. Polym. Res. 2019, 26, 86. [Google Scholar] [CrossRef]
- Hu, S.-K.; Shou, T.; Chen, S.; Zhao, X.-Y.; Lu, Y.-L.; Zhang, L.-Q. High shape-memory effect of hindered phenol/nitrile–butadiene rubber composites by forming hydrogen bonding. J. Appl. Polym. Sci. 2020, 137, 48911. [Google Scholar] [CrossRef]
- Gan, L.; Shang, S.; Jiang, S.X. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos. Part B Eng. 2016, 84, 294–300. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Zao, W.; Feng, H.; Hou, Y.; Huo, A. High-Performance Nitrile Butadiene Rubber Composites with Good Mechanical Properties, Tunable Elasticity, and Robust Shape Memory Behaviors. Ind. Eng. Chem. Res. 2020, 59, 15936–15947. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Chen, F.; Zao, W.; Feng, H.; Zhao, Y. Thermal-oxidative aging behaviors of shape memory nitrile butadiene rubber composite with dual crosslinking networks. Polym. Degrad. Stab. 2020, 179, 109280. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Zao, W.; Feng, H.; Hou, Y.; Huo, A. High-Temperature-Aging Induced Sequential Recovery of Shape Memory Nitrile Butadiene Rubber Composites. ACS Appl. Mater. Interfaces 2021, 13, 10376–10387. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Dong, Y.; Islam, M.Z.; Yu, L.; Liu, F.; Chen, S.; Qi, X.; Zhu, Y.; Fu, Y.; Xu, Z.; et al. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019, 169, 209–216. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Goodarzi, V.; Amirkiai, A.; Noroozi, M.; Abrisham, M.; Dehghan, P.; Shakeri, Y.; Karimpour-Motlagh, N.; PoudinehHajipoor, F.; Ali Khonakdar, H.; et al. Programing polyurethane with systematic presence of graphene-oxide (GO) and reduced graphene-oxide (rGO) platelets for adjusting of heat-actuated shape memory properties. Eur. Polym. J. 2019, 118, 619–632. [Google Scholar] [CrossRef]
- Lai, S.M.; Guo, G.L.; Xie, Y.C.; Chen, J.M.; Xu, D.Y.; Wei, Y.E.; Cao, Z.R. A novel multi-triggered natural rubber (NR)/beeswax (BW)/carbon nanotube (CNT) shape memory bio-nanocomposite. J. Polym. Res. 2020, 27, 283. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.M.; Tsuchiya, K.; Otsuka, K.; Saxena, A.; Deng, J.; Ren, X. 1—Mechanisms and properties of shape memory effect and superelasticity in alloys and other materials: A practical guide. Philos. Mag. 2011, 12, 83–92. [Google Scholar] [CrossRef]
- Takashima, K.; Ishida, A. 1.03—Metals and Alloys. In Comprehensive Microsystems; Gianchandani, Y.B., Tabata, O., Zappe, H., Eds.; Elsevier: Oxford, UK, 2008; pp. 53–73. ISBN 978-0-444-52190-3. [Google Scholar]
- Behl, M.; Lendlein, A. Actively moving polymers. Soft Matter 2007, 3, 58–67. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Abrisham, M.; Noroozi, M.; Amirkiai, A.; Dehghan, P.; Goodarzi, V.; Zahiri, B. Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review. Eur. Polym. J. 2019, 117, 280–303. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Siengchin, S.; George, J.J.; Jose, S. Shape Memory Polymers, Blends and Composites: Advances and Applications; Springer: Singapore, 2020; Volume 115, ISBN 978-981-13-8573-5. [Google Scholar]
- Tobushi, H.; Hashimoto, T.; Ito, N.; Hayashi, S.; Yamada, E. Shape Fixity and Shape Recovery in a Film of Shape Memory Polymer of Polyurethane Series. J. Intell. Mater. Syst. Struct. 1998, 9, 127–136. [Google Scholar] [CrossRef]
- Tobushi, H.; Okumura, K.; Hayashi, S.; Ito, N. Thermomechanical constitutive model of shape memory polymer. Mech. Mater. 2001, 33, 545–554. [Google Scholar] [CrossRef]
- Tobushi, H.; Hara, H.; Yamada, E.; Hayashi, S. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater. Struct. 1996, 5, 483–491. [Google Scholar] [CrossRef]
- Tobushi, H.; Hashimoto, T.; Hayashi, S.; Yamada, E. Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series. J. Intell. Mater. Syst. Struct. 1997, 8, 711–718. [Google Scholar] [CrossRef]
- Tobushi, H.; Okumura, K.; Endo, M.; Hayashi, S. Thermomechanical Properties of Polyurethane-Shape Memory Polymer Foam. J. Intell. Mater. Syst. Struct. 2001, 12, 283–287. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Jumahat, A.; Abdullah, N.R.; Frormann, L. Determination of Shape Fixity and Shape Recovery Rate of Carbon Nanotube-filled Shape Memory Polymer Nanocomposites. Procedia Eng. 2012, 41, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Larock, R.C. New soybean oil–styrene–divinylbenzene thermosetting copolymers. v. shape memory effect. J. Appl. Polym. Sci. 2002, 84, 1533–1543. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, S.Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Abrisham, M.; Noroozi, M.; Goodarzi, V.; Arjmand, M.; Sadri, M.; Dehghan, P.; Amirkiai, A.; Khonakdar, H.A. Programing polyurethane with rational surface-modified graphene platelets for shape memory actuators and dielectric elastomer generators. Eur. Polym. J. 2020, 133, 109745. [Google Scholar] [CrossRef]
- Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, F.; Fu, Y.; Zhou, C.; Zhang, H. Properties of Poly(butylene terephthalate)/Bisphenol A Polycarbonate Blends Toughening with Epoxy-Functionalized Acrylonitrile–Butadiene–Styrene Particles. J. Macromol. Sci. Part B 2013, 52, 861–872. [Google Scholar] [CrossRef]
- Yuan, S.; Bai, J.; Kai Chua, C.; Zhou, K.; Wei, J. Characterization of Creeping and Shape Memory Effect in Laser Sintered Thermoplastic Polyurethane. J. Comput. Inf. Sci. Eng. 2016, 16. [Google Scholar] [CrossRef]
- Lee, H.; Yang, J.-C.; Thoppey, N.; Anthamatten, M. Semicrystalline Shape-Memory Elastomers: Effects of Molecular Weight, Architecture, and Thermomechanical Path. Macromol. Mater. Eng. 2017, 302, 1700297. [Google Scholar] [CrossRef]
- Raghunath, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. PLA/ESO/MWCNT nanocomposite: A study on mechanical, thermal and electroactive shape memory properties. J. Polym. Res. 2018, 25. [Google Scholar] [CrossRef]
- Xia, L.; Wang, Y.; Lu, N.; Xin, Z. Facile fabrication of shape memory composites from natural Eucommia rubber and high density polyethylene. Polym. Int. 2017, 66, 653–658. [Google Scholar] [CrossRef]
- Huang, H.; Hu, J.; Zhu, Y. Shape-Memory Biopolymers Based on β-Sheet Structures of Polyalanine Segments Inspired by Spider Silks. Macromol. Biosci. 2013, 13, 161–166. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y. Spider Silk: A Smart Biopolymer with Water Switchable Shape Memory Effects—Unraveling the Mystery of Superconraction. Res. J. Text. Appar. 2013, 17, 1–9. [Google Scholar] [CrossRef]
- Cavicchi, K.A. Shape Memory Polymers from Blends of Elastomers and Small Molecule Additives. Macromol. Symp. 2015, 358, 194–201. [Google Scholar] [CrossRef]
- Katzenberg, F.; Heuwers, B.; Tiller, J.C. Superheated rubber for cold storage. Adv. Mater. 2011, 23, 1909–1911. [Google Scholar] [CrossRef]
- Tosaka, M.; Shigeki, E. Triaxially oriented shape memory natural rubber. Polymer 2018, 157, 151–155. [Google Scholar] [CrossRef]
- Katzenberg, F.; Tiller, J.C. Shape memory natural rubber. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1381–1388. [Google Scholar] [CrossRef]
- Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J.C. Shape-memory natural rubber: An exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214, 912–923. [Google Scholar] [CrossRef]
- Wee, J.S.H.; Chai, A.B.; Ho, J.H. Fabrication of shape memory natural rubber using palmitic acid. J. King Saud Univ.-Sci. 2017, 29, 494–501. [Google Scholar] [CrossRef]
- Chang, Y.W.; Eom, J.P.; Kim, J.G.; Kim, H.T.; Kim, D.K. Preparation and characterization of shape memory polymer networks based on carboxylatedtelechelic poly(ε-caprolactone)/epoxidized natural rubber blends. J. Ind. Eng. Chem. 2010, 16, 256–260. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, K.; Wang, Y.; Xu, C. Biobased Heat-Triggered Shape-Memory Polymers Based on Polylactide/Epoxidized Natural Rubber Blend System Fabricated via Peroxide-Induced Dynamic Vulcanization: Co-continuous Phase Structure, Shape Memory Behavior, and Interfacial Compatibilization. Ind. Eng. Chem. Res. 2015, 54, 8723–8731. [Google Scholar] [CrossRef]
- Nakayama, M.; Okano, T. Unique thermoresponsive polymeric micelle behavior via cooperative polymer corona phase transitions. Macromolecules 2008, 41, 504–507. [Google Scholar] [CrossRef]
- Ding, Z. Shape Memory Hybrids: Mechanism and Design for Tailored Properties; Nanyang Technological University: Singapore, 2012. [Google Scholar]
- Fan, K.; Huang, W.M.; Wang, C.C.; Ding, Z.; Zhao, Y.; Purnawali, H.; Liew, K.C.; Zheng, L.X. Water-responsive shape memory hybrid: Design concept and demonstration. Express Polym. Lett. 2011, 5, 409–416. [Google Scholar] [CrossRef]
- Zia, K.M.; Zuber, M.; Barikani, M.; Bhatti, I.A.; Khan, M.B. Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf. B Biointerfaces 2009, 72, 248–252. [Google Scholar] [CrossRef]
- Basak, S. Thermoplastic elastomers in biomedical industry—Evolution and current trends. J. Macromol. Sci. Part A 2021, 58, 579–593. [Google Scholar] [CrossRef]
- Lai, S.M.; Guo, G.L. Two-way shape memory effects of sulfur vulcanized natural rubber (NR) and NR/paraffin wax (PW)/carbon nanotube (CNT) nanocomposites. Polym. Test. 2019, 77, 105892. [Google Scholar] [CrossRef]
- Bai, J.; Shi, Z. Dynamically Cross-linked Elastomer Hybrids with Light-Induced Rapid and Efficient Self-Healing Ability and Reprogrammable Shape Memory Behavior. ACS Appl. Mater. Interfaces 2017, 9, 27213–27222. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Liu, Y.; Leng, J. Conductive shape memory polymer composite incorporated with hybrid fillers: Electrical, mechanical, and shape memory properties. J. Intell. Mater. Syst. Struct. 2011, 22, 369–379. [Google Scholar] [CrossRef]
- Kang, S.M.; Kwon, S.H.; Park, J.H.; Kim, B.K. Carbon nanotube reinforced shape memory polyurethane foam. Polym. Bull. 2013, 70, 885–893. [Google Scholar] [CrossRef]
- Lu, H.; Yin, W.; Huang, W.M.; Leng, J. Self-assembled carboxylic acid-functionalized carbon nanotubes grafting onto carbon fiber for significantly improving electrical actuation of shape memory polymers. RSC Adv. 2013, 3, 21484–21488. [Google Scholar] [CrossRef]
- Fonseca, B.L.; Fonseca, M.A.; Mónica, M.S. Thermo-mechanical characterization of shape-memory polyurethane nanocomposites filled with carbon nanotubes and graphene nanosheets. Polym. Compos. 2018, 39, E1216–E1223. [Google Scholar] [CrossRef]
- Abrisham, M.; Panahi-Sarmad, M.; Mir Mohamad Sadeghi, G.; Arjmand, M.; Dehghan, P.; Amirkiai, A. Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites: Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polym. Test. 2020, 89, 106642. [Google Scholar] [CrossRef]
- Arun, D.I.; Chakravarthy, P.; Santhosh Kumar, K.S. Synergy studies on polyurethane–carbon black, multi-walled carbon nanotube-based heterogeneous electroactive shape memory nanocomposite system. Bull. Mater. Sci. 2020, 43, 219. [Google Scholar] [CrossRef]
- Mohan, D.G.; Gopi, S. Induction Assisted friction stir welding: A review. Aust. J. Mech. Eng. 2020, 18, 119–123. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Yuan, D.; Chen, Y. Design of a High-Strength XSBR/Fe3O4/ZDMA Shape-Memory Composite with Dual Responses. Ind. Eng. Chem. Res. 2018, 57, 14527–14534. [Google Scholar] [CrossRef]
- Huang, J.; Fan, J.; Yin, S.; Chen, Y. Design of remotely, locally triggered shape-memory materials based on bicontinuous polylactide/epoxidized natural rubber thermoplastic vulcanizates via regulating the distribution of ferroferric oxide. Compos. Sci. Technol. 2019, 182, 107732. [Google Scholar] [CrossRef]
- Setua, D.K.; Gupta, Y.N. 4 Elastomer–Clay Nanocomposites with Reference to Their Automobile Applications and Shape-Memory Properties; Walter de Gruyter GmbH: Berlin, Germany, 2019; ISBN 9783110643879. [Google Scholar]
- Gupta, Y.N.; Abbas, S.M.; Sharma, R.B.; Setua, D.K. Crystallization kinetics of polyurethane nanocomposites. J. Therm. Anal. Calorim. 2015, 119, 1393–1405. [Google Scholar] [CrossRef]
- Gupta, Y.N.; Bhave, T.; Abbas, S.M.; Sharma, R.B.; Setua, D.K. Low temperature shape memory characteristics of segmented polyurethane-nanoclay composites. J. Therm. Anal. Calorim. 2016, 124, 1449–1461. [Google Scholar] [CrossRef]
- Gupta, Y.N.; Bhave, T.; Chandra, M.; Sharma, R.B.; Setua, D.K. Shape memory behavior of carbon nanotube filled segmented polyurethane composites under variable stresses. Rubber Chem. Technol. 2017, 90, 159–172. [Google Scholar] [CrossRef]
- Khan, F.; Singh, K. An experimental investigation of the effect of strain on the electrical conductivity of a shape memory polymer. Polym. Test. 2016, 49, 82–87. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Zhou, J.; Wang, Y.; Cao, L.; Chen, Y. memory behavior of co-continuous PLA/NR/SiO2 TPVs. Mater. Chem. Phys. 2019. [Google Scholar] [CrossRef]
- Phua, S.L.; Yang, L.; Huang, S.; Ding, G.; Zhou, R.; Lew, J.H.; Lau, S.K.; Yuan, X.; Lu, X. Shape memory polyurethane with polydopamine-coated nanosheets: Simultaneous enhancement of recovery stress and strain recovery ratio and the underlying mechanisms. Eur. Polym. J. 2014, 57, 11–21. [Google Scholar] [CrossRef]
- Trinca, R.B.; Felisberti, M.I. Segmented polyurethanes based on poly(l-lactide), poly(ethylene glycol) and poly(trimethylene carbonate): Physico-chemical properties and morphology. Eur. Polym. J. 2015, 62, 77–86. [Google Scholar] [CrossRef]
- Dong, Y.; Ding, J.; Wang, J.; Fu, X.; Hu, H.; Li, S.; Yang, H.; Xu, C.; Du, M.; Fu, Y. Synthesis and properties of the vapour-grown carbon nanofiber/epoxy shape memory and conductive foams prepared via latex technology. Compos. Sci. Technol. 2013, 76, 8–13. [Google Scholar] [CrossRef]
- Rong, J.; Ge, M.; Fang, X.; Zhou, C. Rong-Solution ionic strength engineering as a generic strategy to coat GO on various functional particles and its application in high-performance li-s batteries. Nano Lett. 2014, 14, 473–479. [Google Scholar] [CrossRef]
- Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077–1135. [Google Scholar] [CrossRef]
- Xu, B.; Huang, W.M.; Pei, Y.T.; Chen, Z.G.; Kraft, A.; Reuben, R.; De Hosson, J.T.M.; Fu, Y.Q. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur. Polym. J. 2009, 45, 1904–1911. [Google Scholar] [CrossRef]
- Lu, H.; Shen, H.; Song, Z.; Shing, K.S.; Tao, W.; Nutt, S. Rod-like silicate-epoxy nanocomposites. Macromol. Rapid Commun. 2005, 26, 1445–1450. [Google Scholar] [CrossRef]
- Yang, B.; Huang, W.M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47, 1348–1356. [Google Scholar] [CrossRef]
- Yang, B.; Huang, W.M.; Li, C.; Chor, J.H. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur. Polym. J. 2005, 41, 1123–1128. [Google Scholar] [CrossRef]
- Tsukada, G.; Tokuda, M.; Torii, M. Temperature triggered shape memory effect of transpolyisoprene-based polymer. J. Endod. 2014, 40, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.M.; Sandrik, J.L.; Heuer, M.A.; Rapp, G.W. Composition and Mechanical Properties of Gutta-Percha Endodontic Points. J. Dent. Res. 1975, 54, 921–925. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Li, S.; Teng, J.; Min, B. Development of functionalized core-shell nanohybrid/synthetic rubber nanocomposites with enhanced performance. Soft Matter 2019, 15, 8338–8351. [Google Scholar] [CrossRef]
- Xiao, R.; Huang, W.M. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol. Biosci. 2020, 20, 1–40. [Google Scholar] [CrossRef]
- Lendlein, A.; Schmidt, A.M.; Langer, R. AB-polymer networks based on oligo(ε-caprolactone) segments showing shape-menory properties. Proc. Natl. Acad. Sci. USA 2001, 98, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Lendlein, A.; Schmidt, A.M.; Schroeter, M.; Langer, R. Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 1369–1381. [Google Scholar] [CrossRef]
- Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef]
- Edlund, U.; Albertsson, A.C. Degradable polymer microspheres for controlled drug delivery. Adv. Polym. Sci. 2002, 157, 67–112. [Google Scholar] [CrossRef]
- Sarazin, P.; Roy, X.; Favis, B.D. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 2004, 25, 5965–5978. [Google Scholar] [CrossRef]
- Ylinen, P. Filling of bone defects with porous hydroxyapatite reinforced with polylactide or polyglycolide fibres. J. Mater. Sci. Mater. Med. 1994, 5, 522–528. [Google Scholar] [CrossRef]
- Hofmann, G.O. Biodegradable implants in traumatology: A review on the state-of-the-art. Arch. Orthop. Trauma Surg. 1995, 114, 123–132. [Google Scholar] [CrossRef]
- Leclerc, E.; Furukawa, K.S.; Miyata, F.; Sakai, Y.; Ushida, T.; Fujii, T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials 2004, 25, 4683–4690. [Google Scholar] [CrossRef]
- Leiggener, C.S.; Curtis, R.; Müller, A.A.; Pfluger, D.; Gogolewski, S.; Rahn, B.A. Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials 2006, 27, 202–207. [Google Scholar] [CrossRef]
- Osther, P.J.; Gjøde, P.; Mortensen, B.B.; Mortensen, P.B.; Bartholin, J.; Gottrup, F. Randomized comparison of polyglycolic acid and polyglyconate sutures for abdominal fascial closure after laparotomy in patients with suspected impaired wound healing. Br. J. Surg. 1995, 82, 1080–1082. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.A.; Lu, Y.; Mao, S.; Chen, S. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 2005, 26, 7642–7649. [Google Scholar] [CrossRef]
- Min, C.; Cui, W.; Bei, J.; Wang, S. Biodegradable shape-memory polymer—Polylactide-co-poly(glycolide-co-caprolactone) multiblock copolymer. Polym. Adv. Technol. 2005, 16, 608–615. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites. Biomaterials 2006, 27, 4288–4295. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, J.; Luo, H.; Young, R.J.; Deng, L.; Zhang, S.; Fan, Y.; Ye, G. Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 2012, 8, 2509–2517. [Google Scholar] [CrossRef]
- Young, R.J.; Eichhorn, S.J. Deformation mechanisms in polymer fibres and nanocomposites. Polymer 2007, 48, 2–18. [Google Scholar] [CrossRef]
- Blackledge, T.A.; Boutry, C.; Wong, S.C.; Baji, A.; Dhinojwala, A.; Sahni, V.; Agnarsson, I. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk. J. Exp. Biol. 2009, 212, 1981–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, F.I.; McEwen, I.J.; Viney, C. Supercontraction stress in wet spider dragline. Nature 2002, 416, 37. [Google Scholar] [CrossRef] [PubMed]
- Cranford, S.W.; Tarakanova, A.; Pugno, N.M.; Buehler, M.J. Nonlinear material behaviour of spider silk yields robust webs. Nature 2012, 482, 72–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Xu, M.; Wang, H.; Li, L.; Li, J.; Fang, Q.; Zhang, J. Heat-responsive shape memory Eucommia ulmoides gum composites reinforced by zinc dimethacrylate. J. Appl. Polym. Sci. 2020, 137, 1–8. [Google Scholar] [CrossRef]
Components | Phr |
---|---|
Natural rubber | 100 |
Sulphur | 0.2 |
ZnO | 0.15 |
Zinc diethyldithiocarbamate | 0.15 |
Sample | Shape Recovery (%) | Shape Fixity (%) | Recovery Rate (s) |
---|---|---|---|
TPU | 86.2 | 94.3 | 15.4 |
1 wt% | |||
TPU/CNT-1 | 92.1 | 95.0 | 12.8 |
TPU/MMT-1 | 90.0 | 93.6 | 14.1 |
TPU/CNT:MMT-1 | 93.3 | 93.5 | 12.4 |
3 wt% | |||
TPU/CNT-3 | 94.7 | 98.3 | 12.1 |
TPU/MMT-3 | 91.3 | 94.6 | 13.7 |
TPU/CNT:MMT-3 | 96.2 | 97.8 | 11.5 |
5 wt% | |||
TPU/CNT-5 | 92.0 | 98.5 | 12.2 |
TPU/MMT-5 | 91.0 | 95.5 | 14.2 |
TPU/CNT:MMT-5 | 95.6 | 99.1 | 11.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reghunadhan, A.; Jibin, K.P.; Kaliyathan, A.V.; Velayudhan, P.; Strankowski, M.; Thomas, S. Shape Memory Materials from Rubbers. Materials 2021, 14, 7216. https://doi.org/10.3390/ma14237216
Reghunadhan A, Jibin KP, Kaliyathan AV, Velayudhan P, Strankowski M, Thomas S. Shape Memory Materials from Rubbers. Materials. 2021; 14(23):7216. https://doi.org/10.3390/ma14237216
Chicago/Turabian StyleReghunadhan, Arunima, Keloth Paduvilan Jibin, Abitha Vayyaprontavida Kaliyathan, Prajitha Velayudhan, Michał Strankowski, and Sabu Thomas. 2021. "Shape Memory Materials from Rubbers" Materials 14, no. 23: 7216. https://doi.org/10.3390/ma14237216
APA StyleReghunadhan, A., Jibin, K. P., Kaliyathan, A. V., Velayudhan, P., Strankowski, M., & Thomas, S. (2021). Shape Memory Materials from Rubbers. Materials, 14(23), 7216. https://doi.org/10.3390/ma14237216