Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete
Abstract
:1. Introduction
2. Supplementary Cementitious Materials (SCMs)
2.1. Fly Ash (FA)
Pozzolanic Reaction of Fly Ash
2.2. Ground Granulated Blast Furnace Slag (GGBS)
Pozzolanic Action of GGBS
2.3. Silica Fume (SF)
Influence of Silica Fume in Cement Matrix
2.4. Rice Husk Ash Admixed Concrete (RHA)
Pozzolanic Reactions of RHA
2.5. Sugarcane Bagasse Ash (SBA)
Influence of SBA in Cement Matrix
2.6. Tire-Derived Fuel Ash (TDFA)
Pozzolanic Action of TDFA
3. Chemical Additives/Admixtures
3.1. Corrosion Inhibiting Admixtures
3.2. Self-Curing Concrete
3.3. Self-Healing Concrete
3.4. Super-Hydrophobic Concrete
3.5. Electromagnetic (EM) Wave Shielding Concrete
3.6. Self-Temperature Adjusting Concrete
4. Conclusions
- SCMs such as fly ash at levels of up to 25 to 30% can be safely used to replace Portland cement, resulting in better properties. A significant level of replacement of Portland cement by fly ash is not only beneficial to the concrete but also minimizes the production of cement, and thereby reduces the greenhouse gas effect as per the following equation:
- Mechanical grinding, thermal activation, and chemical activation accelerates the hydration reaction of fly ash with cement. Activation of fly ash is essential in order to obtain better performance in both mechanical and corrosion-resistant properties. Activation methodology increases the number of connecting points in fly ash and binds with cement within a short period. Activated fly ash-admixed cement yield designs showed compressive strength within 28 days on par with ordinary Portland cement.
- GGBS at levels up to 50 to 55% can be safely used to replace Portland cement, with better properties. GGBS has undergone in situ activation, with other alkalis present in it. The active ingredients in GGBS are highly reactive; hence, it undergoes a hydration reaction with cement which forms bulky calcium silicate hydrate, leads to a pore blocking effect.
- Bagasse ash at levels up to 10–15% can be safely used to replace Portland cement, with better properties. The presence of amorphous silica in SBA reacts with free Ca(OH)2 in the cement matrix, which produces secondary C-S-H gel and improves the compressive strength of concrete. SBA contains Al2O3, which reacts with Ca(OH)2, leading to the formation of C-A-H, which can reduce sulphate attack. Unreacted silica in SBA acts as a pore filler, which can reduce porosity and voids in concrete, which is helpful for increasing resistance to chloride penetration and reducing the corrosion rate of steel rebar.
- The reaction of silica fume in concrete involves both a physical contribution and chemical action. As a physical contribution, adding silica fume fills the spaces in the interfacial region of cement grains. As a chemical contribution, silica fume contains more than 90% very highly amorphous SiO2. Thus, it is a highly reactive pozzolanic material and readily reacts with calcium hydroxide to form C-S-H gel and provide hardened concrete.
- RHA is an effective SCM, and at an optimal replacement level up to 15–20% of Portland cement improves strength and reduces the sulphate reaction and chloride diffusion, as well as the corrosion rate of embedded steel rebar. The pozzolanic reaction is favorable in RHA when reactive silica is in its amorphous state, leading to the formation of additional C-S-H gel, which can improve the strength and durability of concrete.
- SCM-blended concrete resists both chloride and sulphate attack. Hence, concrete with SCMs is highly useful to construct civil infrastructure such as bridges, nuclear reactors, ports, seashore and marine environment areas, etc.
- With the rapid growth of the automobile industry in the 21st century, tire-derived fuel ash may find applications in the construction industry. TDFA contains 25–30% SiO2 and 30–35% CaO, and thus is considered a suitable pozzolanic material. Furthermore, TDFA can be used as a partial replacement in cement and also used as a coarse aggregate in concrete.
- The purpose of corrosion-inhibiting admixtures is to protect rebar from corrosion. They are added to the concrete during the casting stage itself. Hence, in the construction of any new concrete structures the use of corrosion inhibitors is inevitable. For an existing concrete structure, a migrating or electro-injection methodology may be adopted to safeguard the embedded steel in concrete.
- Self-curing concrete is essential in arid and semi-arid regions where scarcity of water is a critical problem. Self-curing concrete minimizes cracking and shrinkage in concrete, and thereby improves its durability. The biggest advantage of self-curing concrete is the elimination of labour requirements, bypassing the laborious curing process of 28 days (for OPC) or 90 days (for PPC) post-construction.
- The self-healing process in concrete can be achieved by autonomous healing, autogenous healing, and microbial methods. In all three, the concrete is rendered capable of repairing cracks automatically without any external inspection or human involvement. However, this methodology is limited to smaller cracks only.
- Superhydrophobic chemical admixtures can be applied to concrete either through surface coatings or by admixture in concrete. In both methods, hydrophobic materials resist water and offer protection to both concrete and rebar.
- Electromagnetic shielding concrete has applications in both military buildings and civil applications. EMI shielding can be achieved by either absorption or reflection. Carbon materials, special types of conducting polymers, and metal fibers play important roles in making EMI-shielded concrete.
- Self-temperature adjusting concretes are very useful in tropical countries because indoor concrete buildings consume more energy for cooling during the summer seasons. This can be achieved by utilising phase changed materials (PCMs) in the concrete and thereby mitigating thermal effects.
- The integration of innovative technologies such as nano, geopolymer, 3D printing/digital production, bio, self-assembly, and organic–inorganic copolymerization may soon align with existing technologies to promote the growth of multipurpose structures, and provide a boon to the construction industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Environment, U.; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake by mortars and concretes made with portuguese cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- ASTM C125-21a. Standard Terminology Relating to Concrete and Concrete Aggregates; ASTM: West Conshohocken, PA, USA, 2021. [Google Scholar]
- American Concrete Institute. ACI Committee 212, Admixtures for Concrete; American Concrete Institute: Farmington Hills, MI, USA, 1981; pp. 24–52. [Google Scholar]
- ASTM. C595/C595M-21, Standard Specification for Blended Hydraulic Cements; ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar]
- Jang, S.-Y.; Karthick, S.; Kwon, S.-J. Investigation on durability performance in early aged high-Performance concrete containing GGBFS and FA. Adv. Mater. Sci. Eng. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-H.; Ryu, H.-S.; Karthick, S.; Kwon, S.-J. Time and crack effect on chloride diffusion for concrete with fly ash. Int. J. Concr. Struct. Mater. 2018, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kathirvel, P.; Saraswathy, V.; Karthik, S.; Sekar, A. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 2013, 38, 589–598. [Google Scholar] [CrossRef]
- Memon, A.; Radin, S.; Zain, M.; Trottier, J.-F. Effects of mineral and chemical admixtures on high-Strength concrete in seawater. Cem. Concr. Res. 2002, 32, 373–377. [Google Scholar] [CrossRef]
- ASTM International. C618-19 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Gollakota, A.R.; Volli, V.; Shu, C.-M. Progressive utilisation prospects of coal fly ash: A review. Sci. Total. Environ. 2019, 672, 951–989. [Google Scholar] [CrossRef]
- Davis, R.E.; Carlson, R.W.; Kelly, J.W.; Davis, H.E. Properties of Cements and Concretes containing Fly Ash. ACI J. Proc. 1937, 33, 577–612. [Google Scholar]
- Kokubu, M. Fly ash and fly ash cement. In Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo, Japan, 7–11 October 1968; Cement Association of Japan: Tokyo, Japan, 1968; pp. 75–105. [Google Scholar]
- Helmuth, R. Fly Ash in Cement and Concrete; Portland Cement Association: Skokie, IL, USA, 1987. [Google Scholar]
- Rashad, A.M. A brief on high-Volume Class F fly ash as cement replacement–A guide for Civil Engineer. Int. J. Sustain. Built Environ. 2015, 4, 278–306. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Shariq, M.; Akhtar, S.; Masood, A. Performance of high-Volume fly ash concrete after exposure to elevated temperature. J. Aust. Ceram. Soc. 2020, 56, 781–794. [Google Scholar] [CrossRef]
- Saha, A. K, Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [Google Scholar] [CrossRef]
- Bhatt, A.; Priyadarshini, S.; Mohanakrishnan, A.A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials (AASHTO) 2009. Coal fly ash and raw or calcined natural pozzolan for use in concrete, AASHTO M 295-07. In Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 29th ed.; AASHTO: Washington, DC, USA, 2009; pp. M295-1–M295-5. [Google Scholar]
- Halstead, W. NCHRP Synthesis 127: Use of Fly Ash in Concrete; Transportation Research Board, National Research Council: Washington, DC, USA, 1986. [Google Scholar]
- Bouzoubaa, N.; Foo, S. Use of Fly Ash and Slag in Concrete: A Best Practice Guide; Materials Technology Laboratory (MTL), Public Works and Government Services; Government of Canada: Toronto, ON, Canada, 2004. [Google Scholar]
- Thomas, M. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007; Volume 5420. [Google Scholar]
- Ayobami, A.B. Performance of wood bottom ash in cement-Based applications and comparison with other selected ashes: Overview. Resour. Conserv. Recycl. 2021, 166, 105351. [Google Scholar] [CrossRef]
- Pedersen, K.H.; Jensen, A.D.; Skjøth-Rasmussen, M.S.; Dam-Johansen, K. A review of the interference of carbon containing fly ash with air entrainment in concrete. Prog. Energy Combust. Sci. 2008, 34, 135–154. [Google Scholar] [CrossRef]
- Bahedh, M.A.; Jaafar, M.S. Ultra high-Performance concrete utilizing fly ash as cement replacement under autoclaving technique. Case Stud. Constr. Mater. 2018, 9, e00202. [Google Scholar] [CrossRef]
- American Concrete Institute, ACI Committee 232. Use of Fly Ash in Concrete, ACI 232.2R-03; American Concrete Institute: Farmington Hills, MI, USA, 1996; p. 34. [Google Scholar]
- Moghaddam, F.; Sirivivatnanon, V.; Vessalas, K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud. Constr. Mater. 2019, 10, e00218. [Google Scholar] [CrossRef]
- Puthipad, N.; Ouchi, M.; Rath, S.; Attachaiyawuth, A. Enhancement in self-Compactability and stability in volume of entrained air in self-Compacting concrete with high volume fly ash. Constr. Build. Mater. 2016, 128, 349–360. [Google Scholar] [CrossRef]
- Fauzi, A.; Nuruddin, M.F.; Malkawi, A.B.; Abdullah, M.M.A.B. Study of fly ash characterization as a cementitious material. Procedia Eng. 2016, 148, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, D.; Qiao, Y.; Zhang, S.; Sun, C.; Zhao, T. Effect of air entrainment on the mechanical properties, chloride migration, and microstructure of ordinary concrete and fly ash concrete. J. Mater. Civ. Eng. 2018, 30, 04018265–04018274. [Google Scholar] [CrossRef]
- Siyal, A.A.; Azizli, K.A.; Man, Z.; Ullah, H. Effects of parameters on the setting time of fly ash based geopolymers using Taguchi method. Procedia Eng. 2016, 148, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Johari, M.M.; Brooks, J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S.; Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem. Concr. Res. 2005, 35, 1165–1171. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Bilodeau, A.; Fournier, B.; Hooton, R.; Gagné, R.; Jolin, M. Deicing salt scaling resistance of concrete incorporating supplementary cementing materials: Laboratory and field test data. Can. J. Civ. Eng. 2008, 35, 1261–1275. [Google Scholar] [CrossRef]
- Thomas, M.D.A. Laboratory and field studies of salt scaling in fly ash concrete. In Rilem Proceedings; Chapman & Hall: London, UK, 1997; pp. 21–30. [Google Scholar]
- Lund, M.S.; Kevern, J.T.; Schaefer, V.R.; Hansen, K.K. Mix design for improved strength and freeze-Thaw durability of pervious concrete fill in Pearl-Chain Bridges. Mater. Struct. 2017, 50, 1–15. [Google Scholar] [CrossRef]
- Thorstensen, R.T.; Fidjestol, P. Inconsistencies in the pozzolanic strength activity index (SAI) for silica fume according to EN and ASTM. Mater. Struct. 2015, 48, 3979–3990. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, A.; Ghorbani, J. Chemical activation and set acceleration of lime-Natural pozzolan cement. Ceram. Silik. 2006, 50, 193–199. [Google Scholar]
- Saca, N.; Georgescu, M. Behavior of ternary blended cements containing limestone filler and fly ash in magnesium sulfate solution at low temperature. Constr. Build. Mater. 2014, 71, 246–253. [Google Scholar] [CrossRef]
- Kim, J.K.; Cho, S.D.; Lee, H.D.; Kim, S.C. Effect of ammonia concentration on the utilization of ACFA (ammonia contaminated fly ash) as an additive in mortar and concrete mixture. J. Ind. Eng. Chem. 2007, 13, 932–938. [Google Scholar]
- Mbessa, M.; Péra, J. Durability of high-Strength concrete in ammonium sulfate solution. Cem. Concr. Res. 2001, 31, 1227–1231. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Kumala, D. Behaviour of a sustainable concrete in acidic environment. Sustainability 2017, 9, 1556. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.N.; Das, S.S.; Singh, N.B.; Rai, S.; Gajbhiye, N.S. Portland cement hydration in the presence of admixtures: Black gram pulse and superplasticizer. Mater. Res. 2008, 11, 427–431. [Google Scholar] [CrossRef]
- ASTM international. C989-06, Standard Specification for Ground Granulated Blast-Furnace Slag For Use in Concrete and Mortars; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). Standard specification for ground granulated blast-Furnace slag for use in concrete and mortars. AASHTO M 302–06. In Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 29th ed.; AASHTO: Washington, DC, USA, 2009. [Google Scholar]
- Siddique, R. Utilization (recycling) of iron and steel industry by-Product (GGBS) in concrete: Strength and durability properties. J. Mater. Cycles Waste Manag. 2014, 16, 460–467. [Google Scholar] [CrossRef]
- Malagavelli, V.; Rao, P. High performance concrete with GGBS and ROBO sand. Int. J. Eng. Sci. Technol. 2010, 2, 5107–5113. [Google Scholar]
- Mohamed, O.A. A review of durability and strength characteristics of alkali-Activated slag concrete. Materials 2019, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Rashad, A.M. Influence of different additives on the properties of sodium sulfate activated slag. Constr. Build. Mater. 2015, 79, 379–389. [Google Scholar] [CrossRef]
- Rashad, A.; Bai, Y.; Basheer, P.; Milestone, N.; Collier, N. Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 2013, 37, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I. The development of compressive strength of ground granulated blast furnace slag-Palm oil fuel ash-Fly ash based geopolymer mortar. Mater. Des. 2014, 56, 833–841. [Google Scholar] [CrossRef]
- Samad, S.; Shah, A.; Limbachiya, M.C. Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions. Sādhanā 2017, 42, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Samad, S.; Shah, A. Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review. Int. J. Sustain. Built Environ. 2017, 6, 663–674. [Google Scholar] [CrossRef]
- Teng, S.; Lim, T.Y.D.; Divsholi, B.S. Durability and mechanical properties of high strength concrete incorporating ultra-fine ground granulated blast-furnace slag. Constr. Build. Mater. 2013, 40, 875–881. [Google Scholar] [CrossRef]
- Gruyaert, E.; Van den Heede, P.; De Belie, N. Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient–Effect of carbonation on the pore structure. Cem. Concr. Compos. 2013, 35, 39–48. [Google Scholar] [CrossRef]
- Wawrzeńczyk, J.; Molendowska, A. Evaluation of concrete resistance to freeze-Thaw based on probabilistic analysis of damage. Procedia Eng. 2017, 193, 35–41. [Google Scholar] [CrossRef]
- Wawrzeńczyk, J.; Molendowska, A.; Juszczak, T. Determining k-Value with Regard to Freeze-Thaw Resistance of Concretes Containing GGBS. Materials 2018, 11, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, N. 10-Mechanical and environmental resistance of nanoparticle-Reinforced pavement materials. In Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering; Loh, K.J., Nagarajaiah, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 217–246. [Google Scholar]
- Malhotra, V.M. Strength and Durability Characteristics of Concrete Incorporating a Pelletized Blast Furnace Slag; American Concrete Institute: Faemington Hills, MI, USA, 1983. [Google Scholar]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Resistance of alkali-Activated slag concrete to alkali–aggregate reaction. Cem. Concr. Res. 2001, 31, 331–334. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Sarker, P.K. Alkali silica reaction of waste glass aggregate in alkali activated fly ash and GGBFS mortars. Mater. Struct. 2019, 52, 1–17. [Google Scholar] [CrossRef]
- Saraswathy, V.; Karthick, S.P. A state-Of-The-Art review on the durability of silica fume-Blended concrete–A boon to the construction industry. Corros. Rev. 2013, 31, 123–134. [Google Scholar] [CrossRef]
- Rasol, M.A. Effect of silica fume on concrete properties and advantages for Kurdistan region, Iraq. International. J. Sci. Eng. Res. 2015, 6, 170–173. [Google Scholar]
- Campos, H.; Klein, N.; Marques, J. Comparison of the silica fume content for high-Strength concrete production: Chemical analysis of the pozzolanic reaction and physical behavior by particle packing. Mater. Res. 2020, 23, 1–13. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. Use of silica fume and recycled steel fibers in self-Compacting concrete (SCC). Constr. Build. Mater. 2016, 125, 196–209. [Google Scholar] [CrossRef]
- Siddique, R.; Jameel, A.; Singh, M.; Barnat-Hunek, D.; Aït-Mokhtar, A.; Belarbi, R.; Rajor, A. Effect of bacteria on strength, permeation characteristics and micro-Structure of silica fume concrete. Constr. Build. Mater. 2017, 142, 92–100. [Google Scholar] [CrossRef]
- Rao, G.A.; Prasad, B.R. Influence of interface properties on fracture behaviour of concrete. Sadhana 2011, 36, 193–208. [Google Scholar]
- Amin, M.; Abu el-Hassan, K. Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 2015, 80, 116–124. [Google Scholar] [CrossRef]
- Kandil, U.; Erdogdu, S.; Kurbetci, S. Permeation properties of concretes incorporating fly ash and silica fume. Comput. Concrete 2017, 19, 357–363. [Google Scholar] [CrossRef]
- Khater, H.M. Effect of silica fume on the characterization of the geopolymer materials. Int. J. Adv. Struct. Eng. 2013, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xie, G.; Rao, M. Effect of waste glass powder on properties and microstructure of ultrahigh performance cement based materials. Mater. Res. Innov. 2013, 17 (Suppl. 1), 210–214. [Google Scholar] [CrossRef]
- Mohamed, M.R.; Mohamed, H.A. Mechanical strength and corrosion detection of pozzolanic cement. HBRC J. 2013, 9, 103–108. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. C1240-20, Standard Specification for Silica Fume Used in Cementitious Mixtures; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Bagheri, A.; Zanganeh, H.; Alizadeh, H.; Shakerinia, M.; Marian, M.A.S. Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash. Constr. Build. Mater. 2013, 47, 1402–1408. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.-f. Effect of silica fume on durability of concrete composites containing fly ash. Sci. Eng. Compos. Mater. 2013, 20, 57–65. [Google Scholar] [CrossRef]
- Panjehpour, M.; Ali, A.A.A.; Demirboga, R. A review for characterization of silica fume and its effects on concrete properties. Int. J. Sustain. Constr. Eng. Technol. 2011, 2, 1–7. [Google Scholar]
- Khan, S.U.; Nuruddin, M.F.; Ayub, T.; Shafiq, N. Effects of different mineral admixtures on the properties of fresh concrete. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Ahmed, M.; Mallick, J.; Hasan, M.A. A study of factors affecting the flexural tensile strength of concrete. J. King Saud Univ. -Eng. Sci. 2016, 28, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Umar, A.; Masood, A.; Nayeem, M. Performance of self-Compacting concrete at room and after elevated temperature incorporating Silica fume. Adv. Concr. Constr. 2019, 7, 31–37. [Google Scholar]
- Abbas, S.; Nehdi, M.; Saleem, M. Ultra-High performance concrete: Mechanical performance, durability, sustainability and implementation challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [Google Scholar] [CrossRef] [Green Version]
- Karakurt, C.; Bayazıt, Y. Freeze-Thaw resistance of normal and high strength concretes produced with fly ash and silica fume. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-W.; Pack, S.-W.; Nam, S.-H.; Jang, J.-C.; Saraswathy, V. Estimation of the permeability of silica fume cement concrete. Constr. Build. Mater. 2010, 24, 315–321. [Google Scholar] [CrossRef]
- Bui, D.; Hu, J.; Stroeven, P. Particle size effect on the strength of rice husk ash blended gap-Graded Portland cement concrete. Cem. Concr. Compos. 2005, 27, 357–366. [Google Scholar] [CrossRef]
- Saraswathy, V.; Song, H.-W. Corrosion performance of rice husk ash blended concrete. Constr. Build. Mater. 2007, 21, 1779–1784. [Google Scholar] [CrossRef]
- Karthik, S.; Rao, P.R.M.; Awoyera, P. Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J. King Saud Univ. -Eng. Sci. 2017, 29, 400–406. [Google Scholar] [CrossRef]
- Al-Kutti, W.; Islam, A.S.; Nasir, M. Potential use of date palm ash in cement-Based materials. J. King Saud Univ. -Eng. Sci. 2019, 31, 26–31. [Google Scholar] [CrossRef]
- Mehta, P.K. Siliceous Ashes and Hydraulic Cements Prepared Therefrom. U.S. Patent 4105459, 8 August 1978. [Google Scholar]
- Mehtra, P.K.; Folliard, K.J. Rice Husk Ash—A Unique Supplementary Cementing Material: Durability Aspects. Special Publication 1995, 154, 531–542. [Google Scholar]
- Cook, D.J. Development of microstructure and other properties in rice husk ash-OPC systems. In Proceedings of the 9th Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia, 29–31 August 1984; pp. 355–360. [Google Scholar]
- Bondioli, F.; Barbieri, L.; Ferrari, A.M.; Manfredini, T. Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. J. Am. Ceram. Soc. 2010, 93, 121–126. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 2008, 22, 1601–1606. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P.; Mahachai, R. Effect of grinding on chemical and physical properties of rice husk ash. Int. J. Miner. Metall. Mater. 2009, 16, 242–247. [Google Scholar] [CrossRef]
- Jung, S.-H.; Saraswathy, V.; Karthick, S.; Kathirvel, P.; Kwon, S.-J. Microstructure characteristics of fly ash concrete with rice husk ash and lime stone powder. Int. J. Concr. Struct. Mater. 2018, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalaf, M.N.; Yousif, H.A. Use of rice husk ash in concrete. Int. J. Cem. Compos. Lightweight Concr. 1984, 6, 241–248. [Google Scholar] [CrossRef]
- Nair, D.G.; Jagadish, K.; Fraaij, A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cem. Concr. Res. 2006, 36, 1062–1071. [Google Scholar] [CrossRef]
- Mboya, H.A.; King’ondu, C.K.; Njau, K.N.; Mrema, A.L. Measurement of pozzolanic activity index of scoria, pumice, and rice husk ash as potential supplementary cementitious materials for Portland cement. Adv. Civ. Eng. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Adam, F. Indium incorporated silica from rice husk and its catalytic activity. Microporous Mesoporous Mater. 2007, 103, 284–295. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Ekperusi, J.O.; Oke, S.R. Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide. J. King Saud Univ. -Eng. Sci. 2018, 30, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Siddika, A.; Al Mamun, M.A.; Ali, M.H. Study on concrete with rice husk ash. Innov. Infrastruct. Solut. 2018, 3, 1–9. [Google Scholar] [CrossRef]
- Zerbino, R.; Giaccio, G.; Isaia, G. Concrete incorporating rice-Husk ash without processing. Constr. Build. Mater. 2011, 25, 371–378. [Google Scholar] [CrossRef]
- Habeeb, G.; Mahmud, H.; Hamid, N. Assessment of deterioration in RHA-Concrete due to magnesium sulphate attack. Int. J. Miner. Metall. Mater. 2010, 17, 691–696. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.D.M.R. Use of ultrafine rice husk ash with high-Carbon content as pozzolan in high performance concrete. Mater. Struct. 2009, 42, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Kishore, R.; Bhikshma, V.; Prakash, P.J. Study on strength characteristics of high strength rice husk ash concrete. Procedia Eng. 2011, 14, 2666–2672. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 2008, 22, 1675–1683. [Google Scholar] [CrossRef]
- Siegel, J.A.; Mirakovits, J.A.; Hudson, B. Concrete Mix Design, Quality Control. and Specification (with CD ROM), 4th ed.; CRC Press: London, UK, 2003. [Google Scholar]
- Park, C.; Salas, A.; Chung, C.-W.; Lee, C.J. Freeze-Thaw resistance of concrete using acid-Leached rice husk ash. KSCE J. Civ. Eng. 2014, 18, 1133–1139. [Google Scholar] [CrossRef]
- Siddique, R. Waste Materials and By-Products in Concrete; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Muthadhi, A.; Anitha, R.; Kothandaraman, S. Rice husk ash-Properties and its uses: A review. J. Inst. Engineers. India. Civ. Eng. Div. 2007, 88, 50–56. [Google Scholar]
- Chatveera, B.; Lertwattanaruk, P. Evaluation of sulfate resistance of cement mortars containing black rice husk ash. J. Environ. Manag. 2009, 90, 1435–1441. [Google Scholar] [CrossRef]
- Amin, N.U. Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. J. Mater. Civ. Eng. 2011, 23, 717–720. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Morelli, M.R. Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA). Mater. Res. 2014, 17, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Andrade Neto, J.D.S.; Franca, M.J.S.; Amorim Junior, N.S.D.; Ribeiro, D.V. Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Constr. Build. Mater. 2021, 266, 120959. [Google Scholar] [CrossRef]
- Khalil, M.J.; Aslam, M.; Ahmad, S. Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete–A review. Constr. Build. Mater. 2020, 270, 121371. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Santhanam, M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Compos. 2015, 56, 32–45. [Google Scholar] [CrossRef]
- Safayat, M.; Islam, M.; Rubieyat, B.A.; Hasan, M. Investigation on the workability and compressive strength of concrete by using bagasse ash from sugar mill. World Sci. News 2018, 96, 191–201. [Google Scholar]
- Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A. Compressive strength and microstructure of sugar cane bagasse ash concrete. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2569–2577. [Google Scholar] [CrossRef]
- Singh, N.; Singh, V.; Rai, S. Hydration of bagasse ash-Blended portland cement. Cem. Concr. Res. 2000, 30, 1485–1488. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P. Strength, Chloride Penetration and Corrosion Resistance of Ternary Blends of Portland Cement Self-Compacting Concrete Containing Bagasse Ash and Rice Husk-Bark Ash. Chiang Mai, J. Sci. 2018, 45, 863–1874. [Google Scholar]
- Torres, G.B.; Dognani, G.; da Silva Agostini, D.L.; dos Santos, R.J.; Cabrera, F.C.; Aguilar, C.M.G.; de Paiva, F.F.G.; Teixeira, S.R.; Job, A.E. Potential Eco-Friendly Application of Sugarcane Bagasse Ash in the Rubber Industry. Waste Biomass Valorization 2021, 12, 4599–4613. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Kurtis, K.E. Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cem. Concr. Res. 2017, 97, 41–49. [Google Scholar] [CrossRef]
- Sales, A.; Lima, S.A. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag. 2010, 30, 1114–1122. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, T.; Gao, S.-J.; Yang, Z.; Wu, N. Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials 2019, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Subramaniyan, K.; Sivaraja, M. Assessment of sugarcane bagasse ash concrete on mechanical and durability properties. Adv. Nat. Appl. Sci. 2016, 10, 253–261. [Google Scholar]
- Rao, M.C.; Prabath, N. Green concrete using agro industrial waste (sugarcane bagasse ASH). Int. J. Soft Comput. Eng.(IJSCE) 2015, 5, 86–92. [Google Scholar]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar] [CrossRef]
- Ramesh, K.; Goutham, R.; Kishor, S. An experimental study on partial replacement of bagasse ash in basalt concrete mix. Int. J. Civ. Eng. Technol. (IJCIET) 2017, 8, 335–341. [Google Scholar]
- Manojkumar, V.; Shenbagam, S.; Rekha, M. Experimental study on the effects of sugarcane baggase ash in concrete. SSRG Int. J. Civ. Eng 2017, 431–434. [Google Scholar]
- Cordeiro, G.; Toledo Filho, R.; Fairbairn, E. Ultrafine sugar cane bagasse ash: High potential pozzolanic material for tropical countries. Rev. IBRACON De Estrut. E Mater. 2010, 3, 50–67. [Google Scholar] [CrossRef]
- Dhengare, S.W.; Raut, S.; Bandwal, N.; Khangan, A. Investigation into utilization of sugarcane bagasse ash as supplementary cementitious material in concrete. Int. J. Emerg. Eng. Res. Technol. 2015, 3, 109–116. [Google Scholar]
- Andrade, C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 1993, 23, 724–742. [Google Scholar] [CrossRef]
- Shafiq, N.; Elhsameed, A.A.; Nuruddin, M.F. Durability of Sugar Cane Bagasse Ash (SCBA) Concrete towards Chloride Ion Penetration. Appl. Mech. Mater. 2014, 567, 369–374. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P. Utilization of bagasse ash in high-Strength concrete. Mater. Des. 2012, 34, 45–50. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as corrosion resisting admixture for carbon steel in concrete. Anti-Corros. Methods Mater. 2007, 54, 230–236. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Ganesh, V.; Vignesh, G.; Vignesh, M.; Shriram, V.; Suryaprakash, R. Mechanical and durability properties of concrete with partial replacement of fine aggregate by sugarcane bagasse ash (SCBA). Mater. Today: Proc. 2021, 42, 1070–1076. [Google Scholar] [CrossRef]
- Rambabu, P.; Aditya, G.; Ramarao, G. Effect of acidic environment (HCL) on concrete with sugarcane bagasse ash as pozzolona. Int. J. Eng. Res. Appl. 2015, 5, 59–64. [Google Scholar]
- Gupta, R.B.; Chandraul, K.; Singh, M.K. Experimental Study on Strength of Concrete Using Sugar Cane Bagasse Ash. Int. Res. J. Eng. Technol. 2017, 4, 2392–2395. [Google Scholar]
- Global Tire Recycling Industry Analysis by Rubber Type. Available online: https://www.goldsteinresearch.com/report/global-tire-Recycling-Industry-Market-Trends-Analysis (accessed on 1 September 2020).
- Qi, Y.; Indraratna, B.; Heitor, A.; Vinod, J.S. Effect of rubber crumbs on the cyclic behavior of steel furnace slag and coal wash mixtures. J. Geotech. Geoenvironmental Eng. 2018, 144, 04017107–04017118. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Choi, M.J.; Kim, Y.J.; Kim, H.J.; Lee, J.J. Performance evaluation of the use of tire-Derived fuel fly ash as mineral filler in hot mix asphalt concrete. J. Traffic Transp. Eng. 2020, 7, 249–258. [Google Scholar] [CrossRef]
- Hyeok-Jung, K.; Sang-Min, P.; Subbiah, K.; Seung-Jun, K. Durability performance evaluation of concrete containing TDFA (Tire Derived Fuel Ash). Constr. Build. Mater. 2017, 133, 376–386. [Google Scholar] [CrossRef]
- Al-Akhras, N.M.; Smadi, M.M. Properties of tire rubber ash mortar. Cem. Concr. Compos. 2004, 26, 821–826. [Google Scholar] [CrossRef]
- Segre, N.; Galves, A.D.; Rodrigues, J.A.; Monteiro, P.J.; Joekes, I. Use of tyre rubber particles in slag-Modified cement mortars. In Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa, 11 16 May 2003. [Google Scholar]
- Siringi, G.; Abolmaali, A.; Aswath, P.B. Properties of concrete with tire derived aggregate partially replacing coarse aggregates. Sci. World J. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Kardos, A.J.; Durham, S.A. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications. Constr. Build. Mater. 2015, 98, 832–845. [Google Scholar] [CrossRef]
- Arulrajah, A.; Mohammadinia, A.; Maghool, F.; Horpibulsuk, S. Tire derived aggregates as a supplementary material with recycled demolition concrete for pavement applications. J. Clean. Prod. 2019, 230, 129–136. [Google Scholar] [CrossRef]
- Castañeda, A.; Howland, J.J.; Corvo, F.; Pérez, T. Corrosion of steel reinforced concrete in the tropical coastal atmosphere of Havana City, Cuba. Quim. Nova 2013, 36, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneshwari, B.; Selvaraj, A.; Iyer, N.R. 20-Corrosion Inhibitors for Increasing the Service Life of Structures. In New Materials in Civil Engineering; Samui, P., Kim, D., Iyer, N.R., Chaudhary, S., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 657–676. [Google Scholar]
- Fedrizzi, L.; Azzolini, F.; Bonora, P.L. The use of migrating corrosion inhibitors to repair motorways’ concrete structures contaminated by chlorides. Cem. Concr. Res. 2005, 35, 551–561. [Google Scholar] [CrossRef]
- Karthick, S.; Madhavamayandi, A.; Muralidharan, S.; Saraswathy, V. Electrochemical process to improve the durability of concrete structures. J. Build. Eng. 2016, 7, 273–280. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, L.; Wang, Z.; Jin, M.; Bai, S.; Song, S.; Yan, X. Deoxyribonucleic acid as an inhibitor for chloride-Induced corrosion of reinforcing steel in simulated concrete pore solutions. Constr. Build. Mater. 2017, 150, 238–247. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H.; Wang, F. [BMIM] BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim. Acta 2011, 56, 4268–4275. [Google Scholar] [CrossRef]
- Rivetti, M.L.S.; Netto, J.; Junior, M.A.; Ribeiro, D.V. Corrosion inhibitors for reinforced concrete. In Corrosion Inhibitors, Principles and Recent Applications; Aliofkazraei, M., Ed.; IntechOpen: London, UK, 2018; pp. 35–58. [Google Scholar]
- Lee, H.-S.; Saraswathy, V.; Kwon, S.-J.; Karthick, S. Corrosion inhibitors for reinforced concrete: A review. In Corrosion Inhibitors, Principles and Recent Applications; Aliofkazraei, M., Ed.; IntechOpen: London, UK, 2018; pp. 95–120. [Google Scholar]
- Subbiah, K.; Lee, H.-S.; Mandal, S.; Park, T. Conifer Cone (Pinus resinosa) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Appl. Mater. Interfaces 2021, 13, 43676–43695. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-W.; Saraswathy, V. Analysis of corrosion resistance behavior of inhibitors in concrete using electrochemical techniques. Met. Mater. Int. 2006, 12, 323–329. [Google Scholar] [CrossRef]
- Hayyan, M.; Sameh, S.A.; Hayyan, A.; AlNashef, I.M. Utilizing of sodium nitrite as inhibitor for protection of carbon steel in salt solution. Int. J. Electrochem. Sci. 2012, 7, 6941–6950. [Google Scholar]
- Kumar, A. Introduction of Inhibitors, Mechanism and Application for Protection of Steel Reinforcement Corrosion in Concrete. In Corrosion; Singh, A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Elsener, B.; Angst, U. Corrosion inhibitors for reinforced concrete. In Science and Technology of Concrete Admixtures; Aitcin, P.C., Flatt, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 321–339. [Google Scholar]
- Gaidis, J.M. Chemistry of corrosion inhibitors. Cem. Concr. Compos. 2004, 26, 181–189. [Google Scholar] [CrossRef]
- Neville, A. Chloride attack of reinforced concrete: An overview. Mater. Struct. 1995, 28, 63–70. [Google Scholar] [CrossRef]
- Das, J.K.; Pradhan, B. Long term effect of corrosion inhibitor and associated cation type of chloride ions on chloride profile of concrete exposed to composite chloride-Sulfate environment. Mater. Today Proc. 2020, 32, 803–809. [Google Scholar] [CrossRef]
- de Rincon, O.T.; Perez, O.; Paredes, E.; Caldera, Y.; Urdaneta, C.; Sandoval, I. Long-Term performance of ZnO as a rebar corrosion inhibitor. Cem. Concr. Compos. 2002, 24, 79–87. [Google Scholar] [CrossRef]
- Baiqing, Z.; Xiaowei, W.; Qin, L.; Yisheng, P. Performance and mechanism of a water stabiliser for low hardness cooling water. Anti-Corros. Methods Mater. 2003, 50, 347–351. [Google Scholar] [CrossRef]
- Davis, J.R. Corrosion: Understanding the Basics; Materials ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Roberge, P.R. Handbook of Corrosion Engineering; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Koch, G.H.; Brongers, M.P.H.; Thompson, N.G.; Virmani, Y.P.; Payer, J.H. Corrosion Cost and Preventive Strategies in the United States; NACE international: Houston, TX, USA, 2002. [Google Scholar]
- Heiyantuduwa, R.; Alexander, M.; Mackechnie, J. Performance of a penetrating corrosion inhibitor in concrete affected by carbonation-Induced corrosion. J. Mater. Civ. Eng. 2006, 18, 842–850. [Google Scholar] [CrossRef]
- Gallant, D.; Simard, S. A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions. Corros. Sci. 2005, 47, 1810–1838. [Google Scholar] [CrossRef]
- Angst, U.; Büchler, M.; Schlumpf, J.; Marazzani, B. An organic corrosion-Inhibiting admixture for reinforced concrete: 18 years of field experience. Mater. Struct. 2016, 49, 2807–2818. [Google Scholar] [CrossRef]
- Kondratova, I.; Montes, P.; Bremner, T. Natural marine exposure results for reinforced concrete slabs with corrosion inhibitors. Cem. Concr. Compos. 2003, 25, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Jamil, H.; Shriri, A.; Boulif, R.; Montemor, M.; Ferreira, M. Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor. Cem. Concr. Compos. 2005, 27, 671–678. [Google Scholar] [CrossRef]
- Bellal, Y.; Benghanem, F.; Keraghel, S. A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct. 2021, 1225, 129257–129274. [Google Scholar] [CrossRef]
- Hansson, C.; Mammoliti, L.; Hope, B. Corrosion inhibitors in concrete—Part I: The principles. Cem. Concr. Res. 1998, 28, 1775–1781. [Google Scholar] [CrossRef]
- Osial, M.; Wiliński, D. Organic substances as corrosion inhibitors for steel in concrete–an overview. J. Build. Chem. 2016, 1, 43–53. [Google Scholar]
- Shi, W.; Wang, T.-Z.; Dong, Z.-H.; Guo, X.-P. Application of wire beam electrode technique to investigate the migrating behavior of corrosion inhibitors in mortar. Constr. Build. Mater. 2017, 134, 167–175. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, D.; Cai, J.; Shi, L.; Liu, J. Aryl aminoalcohols as corrosion inhibitors for carbon steel in chloride-Contaminated simulated concrete pore solution. Int. J. Electrochem. Sci. 2016, 11, 1135–1151. [Google Scholar]
- Saraswathy, V.; Song, H.-W. Improving the durability of concrete by using inhibitors. Build. Environ. 2007, 42, 464–472. [Google Scholar] [CrossRef]
- Wombacher, F.; Maeder, U.; Marazzani, B. Aminoalcohol based mixed corrosion inhibitors. Cem. Concr. Compos. 2004, 26, 209–216. [Google Scholar] [CrossRef]
- Paredes, M.; Carvallo, A.; Kessler, R.; Virmani, Y.; Sagues, A. Corrosion Inhibitor in Concrete; Federal Highway Administration, Department of Transportation: Tallahassee, FL, USA, 2010; p. 345. [Google Scholar]
- Ormellese, M.; Lazzari, L.; Goidanich, S.; Fumagalli, G.; Brenna, A. A study of organic substances as inhibitors for chloride-Induced corrosion in concrete. Corros. Sci. 2009, 51, 2959–2968. [Google Scholar] [CrossRef]
- Brown, M.C.; Weyers, R.E.; Sprinkel, M.M. Effect of corrosion–inhibiting admixtures on material properties of concrete. Mater. J. 2001, 98, 240–250. [Google Scholar]
- Heren, Z.; Ölmez, H. The influence of ethanolamines on the hydration and mechanical properties of Portland cement. Cem. Concr. Res. 1996, 26, 701–705. [Google Scholar] [CrossRef]
- El-Jazairi, B.; Berke, N.S.; Grace, W.R. The use of calcium nitrite as a corrosion inhibiting admixture to steel reinforcement in concrete. In Corrosion of Reinforcement in Concrete; Page, C.L., Treadaway, K.W.J., Bamforth, P.B., Eds.; CICC Publications, Elsevier: London, UK, 1990; pp. 571–585. [Google Scholar]
- Söylev, T.A.; Richardson, M. Corrosion inhibitors for steel in concrete: State-Of-The-Art Report. Constr. Build. Mater. 2008, 22, 609–622. [Google Scholar] [CrossRef]
- Xu, J.-X.; Jiang, L.-H.; Wang, W.-L.; Tang, L.; Cui, L. Effectiveness of inhibitors in increasing chloride threshold value for steel corrosion. Water Sci. Eng. 2013, 6, 354–363. [Google Scholar]
- Gouda, V.; Halaka, W. Corrosion and corrosion inhibition of reinforcing steel: II. Embedded in concrete. Br. Corros. J. 1970, 5, 204–208. [Google Scholar] [CrossRef]
- Gouda, V. Corrosion and corrosion inhibition of reinforcing steel: I. Immersed in alkaline solutions. Br. Corros. J. 1970, 5, 198–203. [Google Scholar] [CrossRef]
- Ann, K.-Y.; Jung, H.; Kim, H.; Kim, S.; Moon, H.Y. Effect of calcium nitrite-Based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cem. Concr. Res. 2006, 36, 530–535. [Google Scholar] [CrossRef]
- Thangavel, K.; Muralidharan, S.; Saraswathy, V.; Ann, K.Y.; Balamurugan, L. Relationship between alumina and chloride content on their physical and corrosion resistance properties of concrete. Arab. J. Sci. Eng. 2010, 35, 27–38. [Google Scholar]
- Muralidharan, S.; Saraswathy, V.; Thangavel, K.; Srinivasan, S. Competitive role of inhibitive and aggressive ions in the corrosion of steel in concrete. J. Appl. Electrochem. 2000, 30, 1255–1259. [Google Scholar] [CrossRef]
- Muralidharan, S.; Saraswathy, V.; Nima, S.M.; Palaniswamy, N. Evaluation of a composite corrosion inhibiting admixtures and its performance in Portland pozzolana cement. Mater. Chem. Phys. 2004, 86, 298–306. [Google Scholar] [CrossRef]
- Saraswathy, V.; Muralidharan, S.; Kalyanasundaram, R.; Thangavel, K.; Srinivasan, S. Evaluation of a composite corrosion–inhibiting admixture and its performance in concrete under macrocell corrosion conditions. Cem. Concr. Res. 2001, 31, 789–794. [Google Scholar] [CrossRef]
- Abd El Haleem, S.; Abd El Wanees, S.; Abd El Aal, E.; Diab, A. Environmental factors affecting the corrosion behavior of reinforcing steel. IV. Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions. Corros. Sci. 2010, 52, 1675–1683. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Criado, M.; La Iglesia, V.; Fajardo, S.; La Iglesia, A.; Bastidas, J. Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements. Cem. Concr. Compos. 2013, 43, 31–38. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Criado, M.; Fajardo, S.; La Iglesia, A.; Bastidas, J. Corrosion inhibition mechanism of phosphates for early-Age reinforced mortar in the presence of chlorides. Cem. Concr. Compos. 2015, 61, 1–6. [Google Scholar] [CrossRef]
- Tritthart, J. Transport of a surface-Applied corrosion inhibitor in cement paste and concrete. Cem. Concr. Res. 2003, 33, 829–834. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Singh, J.K.; Lee, H.-S.; Ismail, M.A.; Park, W.-J. Effect of LiNO2 inhibitor on corrosion characteristics of steel rebar in saturated Ca(OH)2 solution containing NaCl: An electrochemical study. Constr. Build. Mater. 2017, 133, 387–396. [Google Scholar] [CrossRef]
- Maliekkal, B.P.; Kakkassery, J.T.; Palayoor, V.R. Efficacies of sodium nitrite and sodium citrate–zinc acetate mixture to inhibit steel rebar corrosion in simulated concrete interstitial solution contaminated with NaCl. Int. J. Ind. Chem. 2018, 9, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Sun, W. Effects of phosphate on the chloride-Induced corrosion behavior of reinforcing steel in mortars. Cem. Concr. Compos. 2014, 45, 166–175. [Google Scholar] [CrossRef]
- Yohai, L.; Valcarce, M.; Vázquez, M. Testing phosphate ions as corrosion inhibitors for construction steel in mortars. Electrochim. Acta 2016, 202, 316–324. [Google Scholar] [CrossRef]
- Yohai, L.; Schreiner, W.; Vázquez, M.; Valcarce, M. Phosphate ions as effective inhibitors for carbon steel in carbonated solutions contaminated with chloride ions. Electrochim. Acta 2016, 202, 231–242. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, C.; Chen, S.; Zhang, Y.; Wu, T.; Lu, X.; Wang, M.; Feng, X. Corrosion Inhibition Effect of Sodium Pyrophosphate on Carbon Steel in Chloride Contaminated Mortar. Int. J. Electrochem. Sci 2019, 14, 9726–9740. [Google Scholar] [CrossRef]
- Monticelli, C.; Frignani, A.; Trabanelli, G. A study on corrosion inhibitors for concrete application. Cem. Concr. Res. 2000, 30, 635–642. [Google Scholar] [CrossRef]
- Criado, M.; Monticelli, C.; Fajardo, S.; Gelli, D.; Grassi, V.; Bastidas, J. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-Activated fly ash mortar. Constr. Build. Mater. 2012, 35, 30–37. [Google Scholar] [CrossRef]
- Rizzuto, J.P.; Kamal, M.; Elsayad, H.; Bashandy, A.; Etman, Z.; Roos, M.N.A.; Shaaban, I.G. Effect of self-Curing admixture on concrete properties in hot climate Conditions. Constr. Build. Mater. 2020, 261, 119933–119944. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Water-Entrained cement-based materials: II. Experimental observations. Cem. Concr. Res. 2002, 32, 973–978. [Google Scholar] [CrossRef]
- Friedemann, K.; Stallmach, F.; Kärger, J. Carboxylates and sulfates of polysaccharides for controlled internal water release during cement hydration. Cem. Concr. Compos. 2009, 31, 244–249. [Google Scholar] [CrossRef]
- Hu, M.; Guo, J.; Du, J.; Liu, Z.; Li, P.; Ren, X.; Feng, Y. Development of Ca2+–based, ion-Responsive superabsorbent hydrogel for cement applications: Self-Healing and compressive strength. J. Colloid Interface Sci. 2019, 538, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.J.; Srikanth, M.; Rao, K.J. Strength characteristics of self-Curing concrete. Nature 2012, 20, M40. [Google Scholar]
- El-Dieb, A. Self-Curing concrete: Water retention, hydration and moisture transport. Constr. Build. Mater. 2007, 21, 1282–1287. [Google Scholar] [CrossRef]
- Unnithan, R.S.; Anil, S. Review on Self Curing Concrete. Int. J. Eng. Technol. 2017, 4, 1022–1024. [Google Scholar]
- Teja, G.S.; Ravella, D.P. Studies on self-Curing self-Compacting concretes containing zeolite admixture. Mater. Today Proc. 2021, 43, 2355–2360. [Google Scholar] [CrossRef]
- Lokeshwari, M.; Bandakli, B.P.; Tarun, S.; Sachin, P.; Kumar, V. A review on self-Curing concrete. Mater. Today Proc. 2021, 43, 2259–2264. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.-X.; Li, R.-Y. Factors affecting crack repairing capacity of bacteria-Based self-Healing concrete. Constr. Build. Mater. 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Quantification of crack-Healing in novel bacteria-Based self-Healing concrete. Cem. Concr. Compos. 2011, 33, 763–770. [Google Scholar] [CrossRef]
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Wang, Y.; Dong, S.; Zhang, L.; Ding, S.; Yu, X.; Ou, J. Smart concretes and structures: A review. J. Intell. Mater. Syst. Struct. 2015, 26, 1303–1345. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Effect of cracking on corrosion of steel in concrete. Int. J. Concr. Struct. Mater. 2018, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-Healing in cementitious materials and engineered cementitious composite as a self-Healing material. Constr. Build. Mater. 2012, 28, 571–583. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Yamashiro, Y.; Saito, T. Self-Healing ability of fly ash–cement systems. Cem. Concr. Compos. 2009, 31, 195–203. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yildirim, G.; Erdem, T.K. Self-Healing capability of cementitious composites incorporating different supplementary cementitious materials. Cem. Concr. Compos. 2013, 35, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Nijland, T.G.; Larbi, J.A.; van Hees, R.P.; Lubelli, B.; de Rooij, M. In Self-healing phenomena in concretes and masonry mortars: A microscopic study. In Proceedings of the 1st International Conference on Self-healing Materials, Dordrecht, The Netherlands, 18–20 April 2007; Vander Zwaag, S., Ed.; Springer: Dordrecht, The Netherlands; pp. 1–9. [Google Scholar]
- Huang, H.; Ye, G. Simulation of self-Healing by further hydration in cementitious materials. Cem. Concr. Compos. 2012, 34, 460–467. [Google Scholar] [CrossRef]
- Neville, A. Autogenous healing—A concrete miracle? Concr. Int. 2002, 24, 76–82. [Google Scholar]
- Van Tittelboom, K.; De Belie, N. Self-Healing in cementitious materials—A review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Kardani, O.; Cui, H. Robust evaluation of self-Healing efficiency in cementitious materials–A review. Constr. Build. Mater. 2015, 81, 233–247. [Google Scholar] [CrossRef]
- Mihashi, H.; Kaneko, Y.; Nishiwaki, T.; Otsuka, K. Fundamental study on development of intelligent concrete characterized by self-Healing capability for strength. Trans. Jpn. Concr. Inst. 2000, 22, 441–450. [Google Scholar]
- Wang, X.; Huang, Y.; Huang, Y.; Zhang, J.; Fang, C.; Yu, K.; Chen, Q.; Li, T.; Han, R.; Yang, Z. Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering. Constr. Build. Mater. 2019, 220, 90–101. [Google Scholar] [CrossRef]
- Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK field application and performance of microcapsule-Based self-Healing concrete. Constr. Build. Mater. 2019, 208, 669–685. [Google Scholar] [CrossRef]
- Du, W.; Yu, J.; Gu, Y.; Li, Y.; Han, X.; Liu, Q. Preparation and application of microcapsules containing toluene-Di-Isocyanate for self-Healing of concrete. Constr. Build. Mater. 2019, 202, 762–769. [Google Scholar] [CrossRef]
- Sun, D.; Li, B.; Ye, F.; Zhu, X.; Lu, T.; Tian, Y. Fatigue behavior of microcapsule-Induced self-Healing asphalt concrete. J. Clean. Prod. 2018, 188, 466–476. [Google Scholar] [CrossRef]
- Dong, B.; Ding, W.; Qin, S.; Han, N.; Fang, G.; Liu, Y.; Xing, F.; Hong, S. Chemical self-Healing system with novel microcapsules for corrosion inhibition of rebar in concrete. Cem. Concr. Compos. 2018, 85, 83–91. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next generation of self-Healing concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef] [Green Version]
- Van der Zwaag, S.; Van Dijk, N.; Jonkers, H.; Mookhoek, S.; Sloof, W. Self-Healing behaviour in man-Made engineering materials: Bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Jonkers, H.M. Self-healing concrete: A biological approach. In Self-healing Materials; Springer: Dordrecht, Netherlands, 2007; pp. 195–204. [Google Scholar]
- Jonkers, H.M.; Schlangen, E. In Development of a bacteria-Based self-healing concrete. In International FIB symposium; Citeseer: London, UK, 2008; pp. 425–430. [Google Scholar]
- Xu, H.; Lian, J.; Gao, M.; Fu, D.; Yan, Y. Self-Healing concrete using rubber particles to immobilize bacterial spores. Materials 2019, 12, 2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yuan, J.; Alazhari, M. Effect of microbiological growth components for bacteria-Based self-Healing on the properties of cement mortar. Materials 2019, 12, 1303. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wittmann, F.H.; Lura, P.; Müller, H.S.; Han, S.; Zhao, T. Application of neutron imaging to investigate fundamental aspects of durability of cement-Based materials: A review. Cem. Concr. Res. 2018, 108, 152–166. [Google Scholar] [CrossRef]
- Şahmaran, M.; Lachemi, M.; Li, V.C. Assessing the durability of engineered cementitious composites under freezing and thawing cycles. J. ASTM Int. 2009, 6, 1–13. [Google Scholar]
- Li, W.; Pour-Ghaz, M.; Castro, J.; Weiss, J. Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. J. Mater. Civ. Eng. 2012, 24, 299–307. [Google Scholar] [CrossRef]
- Flores-Vivian, I.; Hejazi, V.; Kozhukhova, M.I.; Nosonovsky, M.; Sobolev, K. Self-Assembling particle-siloxane coatings for superhydrophobic concrete. ACS Appl. Mater. Interfaces 2013, 5, 13284–13294. [Google Scholar] [CrossRef]
- Lanzón, M.; García-Ruiz, P. Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives. Constr. Build. Mater. 2009, 23, 3287–3291. [Google Scholar] [CrossRef]
- Zhang, P.; Wittmann, F.; Zhao, T.; Lehmann, E.; Tian, L.; Vontobel, P. Observation and quantification of water penetration into strain hardening cement-Based composites (SHCC) with multiple cracks by means of neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 2010, 620, 414–420. [Google Scholar] [CrossRef]
- Izaguirre, A.; Lanas, J.; Alvarez, J.I. Ageing of lime mortars with admixtures: Durability and strength assessment. Cem. Concr. Res. 2010, 40, 1081–1095. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yue, J.; Guo, C.; Ji, Y. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr. Build. Mater. 2018, 169, 1–7. [Google Scholar] [CrossRef]
- Husni, H.; Nazari, M.; Yee, H.; Rohim, R.; Yusuff, A.; Ariff, M.A.M.; Ahmad, N.; Leo, C.; Junaidi, M. Superhydrophobic rice husk ash coating on concrete. Constr. Build. Mater. 2017, 144, 385–391. [Google Scholar] [CrossRef]
- Falchi, L.; Müller, U.; Fontana, P.; Izzo, F.C.; Zendri, E. Influence and effectiveness of water-Repellent admixtures on pozzolana–lime mortars for restoration application. Constr. Build. Mater. 2013, 49, 272–280. [Google Scholar] [CrossRef]
- Song, J.; Zhao, D.; Han, Z.; Xu, W.; Lu, Y.; Liu, X.; Liu, B.; Carmalt, C.J.; Deng, X.; Parkin, I.P. Super-Robust superhydrophobic concrete. J. Mater. Chem. A 2017, 5, 14542–14550. [Google Scholar] [CrossRef]
- Zhang, X.; Zhi, D.; Sun, L.; Zhao, Y.; Tiwari, M.K.; Carmalt, C.J.; Parkin, I.P.; Lu, Y. Super-Durable, non-Fluorinated superhydrophobic free-Standing items. J. Mater. Chem. A 2018, 6, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Karthick, S.; Park, D.-J.; Lee, Y.S.; Saraswathy, V.; Lee, H.-S.; Jang, H.-O.; Choi, H.-J. Development of water-Repellent cement mortar using silane enriched with nanomaterials. Prog. Org. Coat. 2018, 125, 48–60. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Kou, S.-C.; Poon, C.-S.; Dai, J.-G.; Li, Q.-Y. Influence of silane-Based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 2013, 35, 32–38. [Google Scholar] [CrossRef]
- Xue, X.; Li, Y.; Yang, Z.; He, Z.; Dai, J.-G.; Xu, L.; Zhang, W. A systematic investigation of the waterproofing performance and chloride resistance of a self-Developed waterborne silane-Based hydrophobic agent for mortar and concrete. Constr. Build. Mater. 2017, 155, 939–946. [Google Scholar] [CrossRef]
- Liu, B.; Shi, J.; Sun, M.; He, Z.; Xu, H.; Tan, J. Mechanical and permeability properties of polymer-Modified concrete using hydrophobic agent. J. Build. Eng. 2020, 31, 101337–101348. [Google Scholar] [CrossRef]
- Wong, H.S.; Barakat, R.; Alhilali, A.; Saleh, M.; Cheeseman, C.R. Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 2015, 70, 9–20. [Google Scholar] [CrossRef]
- Li, Q.; Yang, K.; Yang, C. An alternative admixture to reduce sorptivity of alkali-activated slag cement by optimising pore structure and introducing hydrophobic film. Cem. Concr. Compos. 2019, 95, 183–192. [Google Scholar] [CrossRef]
- Qu, Z.; Yu, Q. Synthesizing super-Hydrophobic ground granulated blast furnace slag to enhance the transport property of lightweight aggregate concrete. Constr. Build. Mater. 2018, 191, 176–186. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, F.; Xie, T.; Ou, J.; Xue, M.; Li, W. Integral hydrophobic concrete without using silane. Constr. Build. Mater. 2019, 227, 116678–116688. [Google Scholar] [CrossRef]
- Liu, P.; Gao, Y.; Wang, F.; Yang, J.; Yu, X.; Zhang, W.; Yang, L. Superhydrophobic and self-Cleaning behavior of Portland cement with lotus-Leaf-Like microstructure. J. Clean. Prod. 2017, 156, 775–785. [Google Scholar] [CrossRef]
- Di Mundo, R.; Petrella, A.; Notarnicola, M. Surface and bulk hydrophobic cement composites by tyre rubber addition. Constr. Build. Mater. 2018, 172, 176–184. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Lei, S.; Ou, J.; Li, W. Rapid preparation of superhydrophobic surface on cement stone. Appl. Phys. A 2019, 125, 1–5. [Google Scholar] [CrossRef]
- Tong, X.C. Advanced Materials and Design for Electromagnetic Interference Shielding; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Xie, W.; Zhu, X.; Yi, S.; Kuang, J.; Cheng, H.; Tang, W.; Deng, Y. Electromagnetic absorption properties of natural microcrystalline graphite. Mater. Des. 2016, 90, 38–46. [Google Scholar] [CrossRef]
- Saini, P. Historical review of advanced materials for electromagnetic interference (EMI) shielding: Conjugated polymers, carbon nanotubes, graphene based composites. Indian, J. Pure Appl. Phys. (IJPAP) 2019, 57, 338–351. [Google Scholar]
- Khushnood, R.A.; Ahmad, S.; Savi, P.; Tulliani, J.-M.; Giorcelli, M.; Ferro, G.A. Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts. Constr. Build. Mater. 2015, 85, 208–216. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Ren, H.; Nie, X.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part. B: Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, H.; Wu, J.; Chen, J. Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles. Constr. Build. Mater. 2017, 151, 575–581. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 123587–123598. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Guan, H.; Liu, S.; Duan, Y.; Cheng, J. Cement based electromagnetic shielding and absorbing building materials. Cem. Concr. Compos. 2006, 28, 468–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhi, R.; Zhu, F.; Xiao, J.; Yuan, R.; Ouyang, S. Electromagnetic interference shielding effectiveness of graphite-MDF cement composite. Chin. J. Mater. Res. 1995, 9, 284–288. [Google Scholar]
- Shintani, T.; Nakamura, M. Electromagnetic Wave Shielding Building Material. U.S. Patent No. 5422174 A, 1995. [Google Scholar]
- Liu, L.; He, P.; Zhou, K.; Chen, T. Microwave absorption properties of helical carbon nanofibers-Coated carbon fibers. AIP Adv. 2013, 3, 082112–082118. [Google Scholar] [CrossRef]
- Jung, M.-J.; Lee, Y.-S.; Hong, S.-G.; Moon, J. Carbon nanotubes (CNTs) in ultra-High performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem. Concr. Res. 2020, 131, 106017–106032. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cem. Concr. Res. 2004, 34, 329–332. [Google Scholar] [CrossRef]
- Chung, D.D.L. Carbon materials for structural self-Sensing, electromagnetic shielding and thermal interfacing. Carbon 2012, 50, 3342–3353. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, M.; Liu, C.; Li, Z. Electromagnetic wave absorbing characteristics of carbon black cement-Based composites. Cem. Concr. Compos. 2010, 32, 508–513. [Google Scholar] [CrossRef]
- Wang, C.; Li, K.; Li, H.; Guo, L.; Jiao, G. Influence of CVI treatment of carbon fibers on the electromagnetic interference of CFRC composites. Cem. Concr. Compos. 2008, 30, 478–485. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W. Microwave absorbing properties of double-Layer cementitious composites containing Mn–Zn ferrite. Cem. Concr. Compos. 2010, 32, 726–730. [Google Scholar] [CrossRef]
- Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. [Google Scholar] [CrossRef]
- Lu, L.; He, Y.; Ping, B.; Wang, F.; Hu, S. TiO2 containing electromagnetic wave absorbing aggregate and its application in concrete. Constr. Build. Mater. 2017, 134, 602–609. [Google Scholar] [CrossRef]
- Sevim, U.K.; Tümen, Y. Strength and fresh properties of borogypsum concrete. Constr. Build. Mater. 2013, 48, 342–347. [Google Scholar] [CrossRef]
- Erdoğan, Y.; Zeybek, M.; Demirbaş, A. Cement mixes containing colemanite from concentrator wastes. Cem. Concr. Res. 1998, 28, 605–609. [Google Scholar] [CrossRef]
- Micheli, D.; Vricella, A.; Pastore, R.; Delfini, A.; Morles, R.B.; Marchetti, M.; Santoni, F.; Bastianelli, L.; Moglie, F.; Primiani, V.M. Electromagnetic properties of carbon nanotube reinforced concrete composites for frequency selective shielding structures. Constr. Build. Mater. 2017, 131, 267–277. [Google Scholar] [CrossRef]
- He, Y.; Lu, L.; Sun, K.; Wang, F.; Hu, S. Electromagnetic wave absorbing cement-Based composite using Nano-Fe3O4 magnetic fluid as absorber. Cem. Concr. Compos. 2018, 92, 1–6. [Google Scholar] [CrossRef]
- Ogunsola, A.; Reggiani, U.; Sandrolini, L. Shielding properties of conductive concrete against transient electromagnetic disturbances. Poceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Tel Aviv, Israel, 9–11 November 2009; pp. 1–5. [Google Scholar]
- Baoyi, L.; Yuping, D.; Shunhua, L. The electromagnetic characteristics of fly ash and absorbing properties of cement-Based composites using fly ash as cement replacement. Constr. Build. Mater. 2012, 27, 184–188. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Advancements in electromagnetic interference shielding cementitious composites. Constr. Build. Mater. 2020, 231, 117116–117139. [Google Scholar] [CrossRef]
- Cao, J.; Chung, D.D.L. Coke powder as an admixture in cement for electromagnetic interference shielding. Carbon 2003, 12, 2433–2436. [Google Scholar] [CrossRef]
- Cao, J.; Chung, D.D.L. Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding. Cem. Concr. Res. 2003, 33, 1737–1740. [Google Scholar] [CrossRef]
- Chiou, J.-M.; Zheng, Q.; Chung, D.D.L. Electromagnetic interference shielding by carbon fibre reinforced cement. Composites 1989, 20, 379–381. [Google Scholar] [CrossRef]
- Wu, J.; Chung, D.D.L. Improving colloidal graphite for electromagnetic interference shielding using 0.1 μm diameter carbon filaments. Carbon 2003, 41, 1313–1315. [Google Scholar] [CrossRef]
- Yee, S.K.; Jenu, M.Z.M. Shielding effectiveness of concrete with graphite fine powder in between 50 MHz to 400 MHz. In Proceedings of the IEEE, Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Melbourne, Australia, 20 May 2013; pp. 1–4. [Google Scholar]
- Wang, Z.-J.; Li, K.-Z.; Wang, C. Freezing–thawing effects on electromagnetic wave reflectivity of carbon fiber cement based composites. Constr. Build. Mater. 2014, 64, 288–292. [Google Scholar] [CrossRef]
- Singh, A.P.; Mishra, M.; Chandra, A.; Dhawan, S. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology 2011, 22, 465701–465710. [Google Scholar] [CrossRef] [PubMed]
- Micheli, D.; Marchetti, M.; Pastore, R.; Vricella, A.; Gradoni, G.; Moglie, F.; Primiani, V.M. Shielding effectiveness of carbon nanotube reinforced concrete composites by reverberation chamber measurements. In Proceedings of the IEEE International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 145–148. [Google Scholar]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Chandra, A.; Mathur, R.; Dhawan, S. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 2013, 56, 86–96. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W. Electromagnetic shielding and absorption properties of fiber reinforced cementitious composites. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 2012, 27, 172–176. [Google Scholar] [CrossRef]
- Guan, B.; Ding, D.; Wang, L.; Wu, J.; Xiong, R. The electromagnetic wave absorbing properties of cement-Based composites using natural magnetite powders as absorber. Mater. Res. Express 2017, 4, 056103–056109. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhang, B.; Song, J.; Volski, V.; Vandenbosch, G.A.; Guo, M. An innovated application of reutilize copper smelter slag for cement-Based electromagnetic interference composites. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.L.; Xiong, G.X.; Yang, Y. Electromagnetic shielding effectiveness of nickel fiber-Reinforced cement composites. Mater. Sci. Forum 2017, 898, 2065–2070. [Google Scholar] [CrossRef]
- Krause, A.P. Conductive Concrete for Electromagnetic Shielding–Methods for Development and Evaluation. Ph.D. Thesis, Student Research in Computer Electronics & Engineering, University of Nebraska, Lincoln, NE, USA, 2012. [Google Scholar]
- Adesina, A. Use of phase change materials in concrete: Current challenges. Renew. Energy Environ. Sustain. 2019, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pisello, A.L.; Fabiani, C.; Cotana, F. New experimental technique to investigate the thermal behavior of PCM/doped concrete for enhancing thermal/energy storage capability of building envelope. Energy Procedia 2017, 126, 139–146. [Google Scholar] [CrossRef]
- Figueiredo, A.; Lapa, J.; Vicente, R.; Cardoso, C. Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs. Constr. Build. Mater. 2016, 112, 639–647. [Google Scholar] [CrossRef]
- Ling, T.-C.; Poon, C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55–62. [Google Scholar] [CrossRef]
- De Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Konuklu, Y.; Ostry, M.; Paksoy, H.O.; Charvat, P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015, 106, 134–155. [Google Scholar] [CrossRef]
- Zhao, Y.; Min, X.; Huang, Z.; Liu, Y.G.; Wu, X.; Fang, M. Honeycomb-Like structured biological porous carbon encapsulating PEG: A Shape-Stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build. 2018, 158, 1049–1062. [Google Scholar] [CrossRef]
- Drissi, S.; Ling, T.-C.; Mo, K.H.; Eddhahak, A. A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-Based materials. Renew. Sustain. Energy Rev. 2019, 110, 467–484. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, L.; Shan, F.; Fang, G. Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 2013, 62, 469–474. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-Of-The-Art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Liu, C.; Li, H. Heat transfer characteristics of an expanded graphite/paraffin PCM-Heat exchanger used in an instantaneous heat pump water heater. Appl. Therm. Eng. 2018, 142, 644–655. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Hawes, D.; Feldman, D. Absorption of phase change materials in concrete. Sol. Energy Mater. Sol. Cells 1992, 27, 91–101. [Google Scholar] [CrossRef]
- Hawes, D.; Banu, D.; Feldman, D. The stability of phase change materials in concrete. Sol. Energy Mater. Sol. Cells 1992, 27, 103–118. [Google Scholar] [CrossRef]
- Hadjieva, M.; Stoykov, R.; Filipova, T. Composite salt-hydrate concrete system for building energy storage. Renew. Energy 2000, 19, 111–115. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.; Zhou, J.; Wu, K. Development of thermal energy storage concrete. Cem. Concr. Res. 2004, 34, 927–934. [Google Scholar] [CrossRef]
- Bentz, D.P.; Turpin, R. Potential applications of phase change materials in concrete technology. Cem. Concr. Compos. 2007, 29, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Hunger, M.; Entrop, A.; Mandilaras, I.; Brouwers, H.; Founti, M. The behavior of self-Compacting concrete containing micro-Encapsulated phase change materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
- Wei, Z.; Falzone, G.; Wang, B.; Thiele, A.; Puerta-Falla, G.; Pilon, L.; Neithalath, N.; Sant, G. The durability of cementitious composites containing microencapsulated phase change materials. Cem. Concr. Compos. 2017, 81, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Drissi, S.; Eddhahak, A.; Caré, S.; Neji, J. Thermal analysis by DSC of Phase Change Materials, study of the damage effect. J. Build. Eng. 2015, 1, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, L.F.; Castellon, C.; Nogues, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials–A review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Marani, A.; Madhkhan, M. Thermal performance of concrete sandwich panels incorporating phase change materials: An experimental study. J. Mater. Res. Technol. 2021, 12, 760–775. [Google Scholar] [CrossRef]
- Han, B.; Zhang, K.; Yu, X. Enhance the thermal storage of cement-Based composites with phase change materials and carbon nanotubes. J. Sol. Energy Eng. 2013, 135, 1–5. [Google Scholar] [CrossRef]
- Ren, M.; Wen, X.; Gao, X.; Liu, Y. Thermal and mechanical properties of ultra-High performance concrete incorporated with microencapsulated phase change material. Constr. Build. Mater. 2021, 273, 121714–121724. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Naresh, R.; Ram, V.V.; Srinivas, P. Microencapsulated bio-Based phase change material-Micro concrete composite for thermal energy storage. J. Build. Eng. 2021, 39, 102247–102262. [Google Scholar] [CrossRef]
Fly Ash | Chemical Compounds (wt%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI | |
Class C | 20.7 | 9.01 | 32.0 | 27.1 | 2.05 | 1.61 | 1.00 | 2.51 | 2.97 |
Class F | 55.23 | 25.95 | 10.17 | 1.32 | 0.31 | 0.18 | 1.59 | 1.59 | 5.25 |
Chemical Compounds (wt%) | Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI | Specific Gravity | Blaine (cm2/g) |
10.38–27.09 | 3.24–15.54 | 0.2–43.14 | 35.43–43.87 | 1.03–2.06 | 0.07–1.35 | 0.19–0.49 | 0.09–1.82 | 0.20–0.86 | 2.95 | 4603 |
References | Chemical Compounds (wt%) | Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI | Specific Gravity | Blaine (cm2/g) | |
[65] | 95.7 | 0.2 | 0.1 | 0.4 | 0.5 | - | 0.2 | 0.7 | 1.99 | 2.22 | 19,000 |
[66] | 95.0 | 1.7 | 2.0 | - | 0.9 | - | 0.2 | 1.02 | 2.21 | 14,000 | |
[67] | 91.9 | 1.05 | 1.11 | 1.35 | 0.61 | - | 0.6 | 1.73 | 1.27 | 2.30 | - |
[68] | 93.6 | 0.8 | 0.5 | 1.8 | 1.10 | - | 0.1 | 0.1 | 1.0 | - | - |
[69] | 96.0 | 1.1 | 1.45 | 1.2 | 0.18 | 0.23 | 0.45 | 1.2 | - | 2.15 | 17,800 |
[70] | 93.0 | 0.58 | 2.79 | 0.60 | 1.00 | 0.5 | 1.0 | 0.1 | 0.5 | 2.20 | 2920 |
References | Chemical Compounds (wt%) | Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI | Specific Gravity | Blaine (cm2/g) | |
[85] | 92.95 | 0.31 | 0.26 | 0.53 | 0.55 | - | 0.08 | 2.06 | 1.97 | - | - |
[92] | 93.2 | 0.4 | 0.1 | 1.1 | 0.1 | 0.9 | 0.1 | 1.3 | 3.7 | 2.23 | 11200 |
[94] | 90.21 | 2.12 | 0.8 | 1.27 | 0.67 | - | 0.14 | 0.76 | 1.56 | - | - |
[100] | 86 | 0.2 | 1.85 | 4.81 | 4.5 | 1.18 | 1.14 | 3.68 | 8.55 | 2.3 | - |
[101] | 95.04 | 0.3 | 0.44 | 1.25 | 0.45 | 0.01 | 0.09 | 1.40 | 0.51 | 2.1 | - |
[102] | 88.32 | 0.46 | 0.41 | 0.67 | 0.44 | 0.08 | 0.12 | 2.91 | 5.81 | 2.11 | - |
References | Chemical Compounds (wt%) | Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | LOI | Specific Gravity | Blaine (cm2/g) | |
[113] | 63.1 | 7.56 | 4.59 | 8.28 | 4.54 | 1.92 | 1.24 | 5.43 | 4.10 | 3.78 | 4946 |
[115] | 72.95 | 1.68 | 1.89 | 7.77 | 1.98 | 4.45 | - | 9.28 | 0.21 | 1.91 | 1450 |
[116] | 63.0 | 31.5 | 1.79 | 0.48 | 0.39 | - | - | - | 0.714 | 2.2 | 25000 |
[117] | 77.25 | 6.37 | 4.21 | 4.05 | 2.61 | 0.11 | 1.38 | 2.34 | 2.47 | - | - |
[118] | 63.16 | 9.70 | 5.40 | 8.40 | 2.90 | 2.87 | - | - | 6.90 | - | - |
[119] | 65.0 | 4.8 | 0.9 | 3.9 | - | 0.9 | - | 2.0 | 10.5 | 2.24 | 12500 |
[120] | 84.16 | 1.68 | 4.40 | 0.36 | 0.15 | 1.93 | 0.18 | 0.57 | 6.04 | - | - |
[121] | 80.8 | 5.1 | 1.6 | 3.1 | 0.3 | 1.5 | 0.8 | 6.3 | 0.4 | - | - |
[122] | 88.2 | 2.3 | 5.1 | 0.6 | 0.4 | 0.1 | 0.1 | 1.3 | 1.75 | - | - |
References | Chemical Compounds (wt%) | Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | C | Specific Gravity | Blaine (cm2/g) | |
[141] | 25.4 | 4.03 | 5.59 | 36.4 | - | 0.57 | 0.76 | 3.21 | - | - | |
[142] | 27.5–31.1 | 6.49–14.5 | - | 24.6–35.9 | - | 5.14–10.6 | - | - | - | - | 5200 |
Exposure Conditions | Type of Inhibitor | Name of Inhibitor | Dosage of Inhibitor | Aggressive Conditions/Dosage | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Ternary cement extract | Anodic/ Inorganic | Calcium nitrite | 0% | 1% of Cl- | - | [198] |
2% of Cl- | - | |||||
3% of Cl- | - | |||||
0.5% | 1% of Cl- | 91 | ||||
2% of Cl- | 89 | |||||
3% of Cl- | 81 | |||||
Portland pozzolona Cement extract | Sodium hydroxide | 0 wt % of cement | 30,000 ppm Cl− | - | [193] | |
1 wt % of cement | 7.47 | |||||
Sodium hydroxide + sodium citrate | 1 wt % of cement | 30,000 ppm Cl− | 12.52 | |||
Sodium hydroxide + sodium citrate + sodium stannate | 33.43 | |||||
Sodium hydroxide + sodium citrate + sodium stannate + CaO | 45.15 | |||||
Sat. Ca(OH)2 | Lithium nitrite | 8.94(g/L) | 0.99 NaCl(g/L) | 85.75 | [199] | |
17.21(g/L) | 83.26 | |||||
Concrete medium | NaNO2 | 0% | 3% NaCl | - | [157] | |
1% | 87.9 | |||||
2% | 87.1 | |||||
3% | 85.83 | |||||
ZnO | 1% | 93.75 | ||||
2% | 94.16 | |||||
3% | 91.66 | |||||
NaNO2 + ZnO | 1% | 95.83 | ||||
2% | 94.58 | |||||
3% | 93.75 | |||||
SCPS | NaNO2 | 1500 ppm | 3.5% NaCl | 55% | [200] | |
Trisodium Citrate | 150 ppm | 72.5 | ||||
Zinc Acetate | 50 ppm | 55 | ||||
Zinc Acetate + Trisodium citrate | 50 ppm + 100 ppm | 78 | ||||
Cement mortar | Anodic/ Inorganic | Sodium nitrate | 0.4 mol per 1 kg cement | 3.5% NaCl (360 days) | 21.4 | [201] |
Cathodic/ Inorganic | Sodium phosphate | 7.5 | ||||
Sodium phosphate | 7% (by wt. of cement) | 1% of Cl- (by wt. of cement) (360 days) | 97.7 | [202] | ||
Carbonated concrete solutions (0.0315 mol/L) | DiSodium Hydrogen Phosphate | 20 mmol/L | 0.1 mol/L NaCl | 52 | [203] | |
60 mmol/L | 93 | |||||
100 mmol/L | 99.95 | |||||
Chloride contaminated cement mortar(3% of NaCl (wt%)) | Sodiumpyro phosphate | 0% | - | - | [204] | |
0.3% | - | 78 | ||||
0.6% | - | 89 | ||||
1.2% | - | 58 | ||||
2.4% | - | 46 | ||||
Cement Concrete | Organic | Monoethanolamine | 1% | exposed to 3% NaCl | 49.58 | [157] |
2% | 50.8 | |||||
3% | 38.75 | |||||
Diethonolamine | 1% | exposed to 3% NaCl | 35.42 | |||
2% | 28.33 | |||||
3% | 39.16 | |||||
Triethonalamine | 1% | exposed to 3% NaCl | 77.04 | |||
2% | 62.5 | |||||
3% | 53.33 | |||||
Sat.Ca(OH)2 | Organic | Deoxyribonucleic acid | 0.0050 % | 0.01 mol/L NaCl add every day (7 Days) | 58.60 | [205] |
Dicyclohexyl ammonium nitrite | Sat. | 0.1 M NaCl | 97 | |||
5-Hexyl-benzotriazole | 0.005 M | 0.1 M NaCl | 67 | |||
Sodium β-glycerophosphate | 0.05 M | 0.1 M NaCl | 92 | |||
Cement Mortar | Organic | Dicyclohexyl ammonium nitrite | 0.5(In/Cl- ratio) | 0.02 Cl−/cement wt. ratio | 88 | [205] |
Sodium β-glycerophosphate | 90 | |||||
Carbonated alkali-activated fly ash mortar | Organic | Disodium β-glycerol phosphate Pentahydrate + sodium 3-aminobenzoate | 0.05 M + 0.05 M | Immersed in 1% NaCl | 63 | [206] |
Disodium β-glycerol phosphate pentahydrate + sodium N-phenylanthranilate | 0.05 M + saturated | 81 |
S.No | Method | Hydrophobic Material | Water Contact Angle (°) | Sliding Angle (°) | Reference |
---|---|---|---|---|---|
1 | Admixed | Fluoroalkylsilane | 158 | 6.1 ± 1.2 | [253] |
2 | Admixed | 1H,1H,2H,2H-Perfluorodecyltriethoxysilane | 162 | - | [255] |
3 | Admixed | Stearic acid with GGBS | 155.7 | - | [261] |
4 | Admixed | Stearic acid emulsion | 130 | - | [262] |
5 | Admixed | Polydimethoysilane | 140 | - | [263] |
6 | Admixed | Tire rubber | 100–120 | - | [264] |
7 | Concrete immersed | Steric acid + alcohol | 167.2 | 4.2 | [265] |
EMI Shielding Materials | Thickness of Specimen | Shielding Efficiency (SE) | Frequency Range | Reference |
---|---|---|---|---|
Coke (9.18%) | 0.48 cm | 49–51 | 1.0–1.5 GHz | [266] |
Carbon black | 1.0 cm | 6–8 dB | 2–8 GHz | [274] |
Carbon Black | 3.0 cm | 20 dB and 10 dB | 8.0–18.0 GHz and 18–26.5 GHz | [281] |
Graphite | 0.3 cm | 10–40 dB | 200–1600 MHz | [275] |
Colloidal Graphite | 0.44 cm | 22.3 dB and 25.6 dB | 1.0 and 1.5 GHz | [294] |
Carbon Fiber (0.1µm diameter)/ | 0.41 cm | 28.7–30.2 dB | 1.0–2.0 GHz | [295] |
Graphite and Carbon Fiber (0.1µm diameter) | - | 19.8 dB | 1.0 GHz | [296] |
Graphite fine powder | 2.0 | 2.4 dB | 50–400 MHz | [297] |
Carbon fiber (CF) | 0.7 cm | 12.5 dB to 4.9 dB | 2.0–18.0 GHz | [298] |
Graphene oxide (30%) with ferrofluid | 10 cm & 30 cm | 12 dB & 80 dB | 2.6 GHz | [299] |
CNT | 5 cm | 60–80 dB | 1.7–2.6 GHz | [290] |
MWCNT | 3.0 cm | 15 dB & 30 dB | 2 GHz & 8 GHz | [300] |
MWCNT | - | 27 dB | 8.2–12.4 GHz | [301] |
Steel fiber | - | 70 dB | 1.5 GHz | [279] |
Steel fiber/CF/PVA fiber | 3.0 cm | 20–40 dB | 8–18 GHz | [302] |
Mn-Zn ferrite | 1.0 cm | 15 dB | 12 GHz | [283] |
Natural Magnetite content | 0.5 cm | 10 dB & −28 dB | 0.8 GHz & 3.7 GHz | [303] |
Copper slag | - | 7–8 dB | 500–1.5 GHz | [304] |
Fe3O4 | 0.7 cm | 8.2–12.4 GHz | 20–27 dB | [271] |
TiO2 | 1.0 cm | 8–18 GHz | −7.5 dB | [285] |
Nickel fiber | 0.6 cm | 1–1500 MHz | 19.85–24.48 dB | [305] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghav, M.; Park, T.; Yang, H.-M.; Lee, S.-Y.; Karthick, S.; Lee, H.-S. Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials 2021, 14, 7270. https://doi.org/10.3390/ma14237270
Raghav M, Park T, Yang H-M, Lee S-Y, Karthick S, Lee H-S. Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials. 2021; 14(23):7270. https://doi.org/10.3390/ma14237270
Chicago/Turabian StyleRaghav, Muralidharan, Taejoon Park, Hyun-Min Yang, Seung-Yeop Lee, Subbiah Karthick, and Han-Seung Lee. 2021. "Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete" Materials 14, no. 23: 7270. https://doi.org/10.3390/ma14237270
APA StyleRaghav, M., Park, T., Yang, H. -M., Lee, S. -Y., Karthick, S., & Lee, H. -S. (2021). Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials, 14(23), 7270. https://doi.org/10.3390/ma14237270