Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery
Abstract
:1. Introduction
2. Polymeric Micelles Physicochemical Characterization
2.1. Drug Loading and Micelle Preparation Methods
2.1.1. Direct Dissolution
2.1.2. Dialysis
2.1.3. Freeze-Drying
2.1.4. Oil-in-Water Emulsion
2.1.5. Solid Dispersion
2.1.6. Solvent Evaporation
2.1.7. Co-Solvent Evaporation
3. Skin Anatomy and Physiology
Skin Routes for Drug Delivery
4. Applications of Polymeric Micelles in Cosmetic and Topical Drug Formulations
4.1. Anti-Ageing
4.1.1. Oleanolic Acid
4.1.2. Coenzyme Q10
4.2. Acne Vulgaris
4.2.1. All-Trans Retinoic Acid
4.2.2. Adapalene
4.2.3. Benzoyl Peroxide
4.3. Psoriasis
4.3.1. Tacrolimus
4.3.2. Resveratrol
4.3.3. Silibinin
4.4. Fungal Infections
Azoles’ Antifungals
4.5. Other Skin Diseases and Conditions
4.5.1. Imiquimod
4.5.2. Spironolactone
5. Nanotoxicology
6. Regulatory Aspects
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chavoshy, F.; Makhmalzade, B.S. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J. Adv. Pharm. Technol. Res. 2018, 9, 2–8. [Google Scholar] [CrossRef]
- Liang, X.; Xu, Z.P.; Grice, J.; Zvyagin, A.; Roberts, M.; Liu, X. Penetration of Nanoparticles into Human Skin. Curr. Pharm. Des. 2013, 19, 6353–6366. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages. Drug Des. Dev. Ther. 2020, 14, 3271–3289. [Google Scholar] [CrossRef]
- Simões, A.; Veiga, F.; Figueiras, A.; Vitorino, C. A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int. J. Pharm. 2018, 548, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starigazdová, J.; Nešporová, K.; Čepa, M.; Šínová, R.; Šmejkalová, D.; Huerta-Angeles, G.; Velebný, V. In vitro investigation of hyaluronan-based polymeric micelles for drug delivery into the skin: The internalization pathway. Eur. J. Pharm. Sci. 2020, 143, 105168. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Recommendation on the Definition of a Nanomaterial (2011/696/EU); European Commision: Brussels, Belgium, 2011. [Google Scholar]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef]
- Almeida, M.; Magalhães, M.; Veiga, F.; Figueiras, A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J. Polym. Res. 2017, 25, 31. [Google Scholar] [CrossRef]
- Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 2014, 190, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Xie, J.; Zhang, X.; Sun, W.; Zhao, H.; Li, Y.; Wang, C. An overview of polymeric nanomicelles in clinical trials and on the market. Chin. Chem. Lett. 2021, 32, 243–257. [Google Scholar] [CrossRef]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014, 4, 17028–17038. [Google Scholar] [CrossRef]
- Yotsumoto, K.; Ishii, K.; Kokubo, M.; Yasuoka, S. Improvement of the skin penetration of hydrophobic drugs by polymeric micelles. Int. J. Pharm. 2018, 553, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shi, Y.; Kim, J.Y.; Park, K.; Cheng, J.-X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivostability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2009, 7, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021, 605, 120807. [Google Scholar] [CrossRef]
- Capretto, L.; Carugo, D.; Cheng, W.; Hill, M.; Zhang, X. Continuous-flow production of polymeric micelles in microreactors: Experimental and computational analysis. J. Colloid Interface Sci. 2011, 357, 243–251. [Google Scholar] [CrossRef]
- Soni, G.; Kale, K.; Shetty, S.; Gupta, M.; Yadav, K.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020, 6, e03846. [Google Scholar] [CrossRef]
- Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine 2010, 5, 485–505. [Google Scholar] [CrossRef] [Green Version]
- Wichit, A.; Tangsumranjit, A.; Pitaksuteepong, T.; Waranuch, N. Polymeric Micelles of PEG-PE as Carriers of All-Trans Retinoic Acid for Stability Improvement. AAPS Pharm. Sci. Tech. 2012, 13, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Lapteva, M.; Mondon, K.; Möller, M.; Gurny, R.; Kalia, Y.N. Polymeric Micelle Nanocarriers for the Cutaneous Delivery of Tacrolimus: A Targeted Approach for the Treatment of Psoriasis. Mol. Pharm. 2014, 11, 2989–3001. [Google Scholar] [CrossRef]
- Jo, M.J.; Jo, Y.H.; Lee, Y.J.; Park, C.-W.; Kim, J.-S.; Hong, J.T.; Chung, Y.B.; Lee, M.K.; Shin, D.H. Physicochemical, Pharmacokinetic, and Toxicity Evaluation of Methoxy Poly(ethylene glycol)-b-Poly(d,l-Lactide) Polymeric Micelles Encapsulating Alpinumisoflavone Extracted from Unripe Cudrania tricuspidata Fruit. Pharmaceutics 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Khurana, B.; Arora, D.; Narang, R.K. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J. Drug Deliv. Sci. Technol. 2020, 59, 101901. [Google Scholar] [CrossRef]
- Casiraghi, A.; Franzè, S.; Selmin, F.; Dazio, V.; Minghetti, P. Investigation of the Effect of Different Emulsifiers on the Transdermal Delivery of EGCG Entrapped in a Polymeric Micelle System. Planta Med. 2016, 83, 405–411. [Google Scholar] [CrossRef]
- Seino, H.; Arai, Y.; Nagao, N.; Ozawa, N.; Hamada, K. Efficient Percutaneous Delivery of the Antimelanogenic Agent Glabridin Using Cationic Amphiphilic Chitosan Micelles. PLoS ONE 2016, 11, e0164061. [Google Scholar] [CrossRef] [PubMed]
- Gungor, S.; Kahraman, E.; Ozsoy, Y. Polymeric micelles for cutaneous drug delivery. Nano Based Drug Deliv. 2015, 9, 367–387. [Google Scholar] [CrossRef]
- Cho, H.K.; Cho, J.H.; Jeong, S.H.; Cho, D.C.; Yeum, J.H.; Cheong, I.W. Polymeric vehicles for topical delivery and related analytical methods. Arch. Pharmacal Res. 2014, 37, 423–434. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential–What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Parra, M.J.A.; Manzano-Roman, R.; Fuentes, M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. Nanomaterials 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Akala, E.O.; Adesina, S.K. Fabrication of polymeric core-shell nanostructures. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 1–49. [Google Scholar]
- Lapteva, M.; Kalia, Y. Related Topic: Encapsulation Technologies-Polymeric Micelles. In Dermal and Transdermal Delivery, in Skin Permeation and Deposition of Therapeutic and Cosmeceutical Compounds; Sugibayashi, K., Ed.; Springer: Tokyo, Japan, 2017; pp. 143–152. [Google Scholar]
- Aliabadi, H.; Elhasi, S.; Mahmud, A.; Gulamhusein, R.; Mahdipoor, P.; Lavasanifar, A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: The effect of solvent composition on micellar properties and drug loading. Int. J. Pharm. 2007, 329, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Abdo, J.M.; Sopko, N.A.; Milner, S.M. The applied anatomy of human skin: A model for regeneration. Wound Med. 2020, 28, 100179. [Google Scholar] [CrossRef]
- Wong, R.; Geyer, S.; Weninger, W.J.; Guimberteau, J.-C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2015, 25, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Nafisi, S.; Maibach, H.I. Chapter 3—Skin Penetration of Nanoparticles, in Emerging Nanotechnologies in Immunology; Shegokar, R., Souto, E.B., Eds.; Elsevier: Boston, MA, USA, 2018; pp. 47–88. [Google Scholar]
- Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E.-S.; Lee, G.-Y.; Kim, J.-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig. 2019, 49, 485–517. [Google Scholar] [CrossRef] [Green Version]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; et al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Güngör, S.; Kahraman, E. Nanocarriers Mediated Cutaneous Drug Delivery. Eur. J. Pharm. Sci. 2021, 158, 105638. [Google Scholar] [CrossRef] [PubMed]
- An, J.Y.; Yang, H.S.; Park, N.R.; Koo, T.-S.; Shin, B.; Lee, E.H.; Cho, S.H. Development of Polymeric Micelles of Oleanolic Acid and Evaluation of Their Clinical Efficacy. Nanoscale Res. Lett. 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angeles, G.; Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, D.; et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017, 156, 86–96. [Google Scholar] [CrossRef]
- Lapteva, M.; Möller, M.; Gurny, R.; Kalia, Y.N. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. Nanoscale 2015, 7, 18651–18662. [Google Scholar] [CrossRef] [Green Version]
- Kandekar, S.G.; del Río-Sancho, S.; Lapteva, M.; Kalia, Y.N. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale 2018, 10, 1099–1110. [Google Scholar] [CrossRef]
- Kahraman, E.; Ÿzhan, G.; Ÿzsoy, Y.; Güngör, S. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surfaces B Biointerfaces 2016, 146, 692–699. [Google Scholar] [CrossRef]
- Chavoshy, F.; Zadeh, B.S.M.; Tamaddon, A.M.; Anbardar, M.H. Delivery and Anti-Psoriatic Effect of Silibinin-Loaded Polymeric Micelles: An Experimental Study in the Psoriatic Skin Model. Curr. Drug Deliv. 2020, 17, 787–798. [Google Scholar] [CrossRef]
- Bachhav, Y.; Mondon, K.; Kalia, Y.; Gurny, R.; Möller, M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J. Control. Release 2011, 153, 126–132. [Google Scholar] [CrossRef]
- Abd-Elsalam, W.H.; El-Zahaby, S.A.; Al-Mahallawi, A.M. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv. 2018, 25, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Lapteva, M.; Mignot, M.; Mondon, K.; Möller, M.; Gurny, R.; Kalia, Y.N. Self-assembled mPEG-hexPLA polymeric nanocarriers for the targeted cutaneous delivery of imiquimod. Eur. J. Pharm. Biopharm. 2019, 142, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Dahmana, N.; Mugnier, T.; Gabriel, D.; Favez, T.; Kowalczuk, L.; Behar-Cohen, F.; Gurny, R.; Kalia, Y.N. Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int. J. Pharm. 2021, 604, 120773. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-F.; Lin, Y.-K.; Zhang, L.-W.; Chang, C.-H.; Fang, J.-Y. Topical delivery of silymarin constituents via the skin route. Acta Pharmacol. Sin. 2009, 31, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kohl, E.; Steinbauer, J.; Landthaler, M.; Szeimies, R.-M. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 873–884. [Google Scholar] [CrossRef]
- Biniek, K.; Kaczvinsky, J.; Matts, P.; Dauskardt, R.H. Understanding age-induced alterations to the biomechanical barrier function of human stratum corneum. J. Dermatol. Sci. 2015, 80, 94–101. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and Function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef]
- Man, M.; Xin, S.; Song, S.; Cho, S.; Zhang, X.; Tu, C.; Feingold, K.; Elias, P. Variation of Skin Surface pH, Sebum Content and Stratum Corneum Hydration with Age and Gender in a Large Chinese Population. Ski. Pharmacol. Physiol. 2009, 22, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172, 3–12. [Google Scholar] [CrossRef]
- Brammann, C.; Müller-Goymann, C.C. An update on formulation strategies of benzoyl peroxide in efficient acne therapy with special focus on minimizing undesired effects. Int. J. Pharm. 2020, 578, 119074. [Google Scholar] [CrossRef] [PubMed]
- Irby, C.E.; Yentzer, B.A.; Feldman, S.R. A Review of Adapalene in the Treatment of Acne Vulgaris. J. Adolesc. Health 2008, 43, 421–424. [Google Scholar] [CrossRef]
- Puig-Rigall, J.; Blanco-Prieto, M.J.; Aydillo, C.; Radulescu, A.; Molero-Vilchez, D.; Dreiss, C.A.; González-Gaitano, G. Poloxamine/D-α-Tocopheryl polyethylene glycol succinate (TPGS) mixed micelles and gels: Morphology, loading capacity and skin drug permeability. J. Mol. Liq. 2021, 324, 114930. [Google Scholar] [CrossRef]
- Santos, A.C.; Pereira, I.; Silva, M.; Ferreira, L.; Caldas, M.; Collado-González, M.D.M.; Magalhães, M.; Figueiras, A.; Ribeiro, A.J.; Veiga, F. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surfaces B Biointerfaces 2019, 180, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D. Epidemiology of Invasive Mycoses in North America. Crit. Rev. Microbiol. 2010, 36, 1–53. [Google Scholar] [CrossRef]
- Apalla, Z.; Nashan, D.; Weller, R.; Castellsagué, X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches. Dermatol. Ther. 2017, 7, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Carvalho, L.; Costa, M.; Melo, A.; Ferreira, I.; Gomez-Sanchez, C.; Monteiro, M.; Vinson, G.; Pignatelli, D. Mineralocorticoid Receptor Antagonists Eplerenone and Spironolactone Modify Adrenal Cortex Morphology and Physiology. Biomedicines 2021, 9, 441. [Google Scholar] [CrossRef]
- Maurer-Jones, M.A.; Gunsolus, I.L.; Murphy, C.; Haynes, C.L. Toxicity of Engineered Nanoparticles in the Environment. Anal. Chem. 2013, 85, 3036–3049. [Google Scholar] [CrossRef] [Green Version]
- Figueiras, A.R.; Ladeira, R.; Veiga, F. Nanotoxicologia: Uma Área Emergente. Acta Farm. Port. 2019, 8, 25. [Google Scholar]
- Kawaguchi, T.; Honda, T.; Nishihara, M.; Yamamoto, T.; Yokoyama, M. Histological study on side effects and tumor targeting of a block copolymer micelle on rats. J. Control. Release 2009, 136, 240–246. [Google Scholar] [CrossRef]
- Yokoyama, M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 2010, 7, 145–158. [Google Scholar] [CrossRef]
- Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target. 2014, 22, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Verma, A.; Pathak, K. Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- European Union, European Medicines Agency, 2014. Joint MHLW/EMA Reflection Paper on the Development of Block Copolymer Micelle Medicinal Products. Available online: https://www.ema.europa.eu/en/development-block-copolymer-micelle-medicinal-products#current-version-section (accessed on 13 September 2021).
- 70. European Commission. Regulation (EC) No 1223/2009 of the European Parliament and of the Council. Off. J. Eur. Union 2009, 1223(L342/59), 151.
- Ferreira, M.S.; de Oliveira, A.P.; Oliveira, R.; de Oliveira, R.P.; Lobo, J.M.S.; Almeida, I. Regulamentação dos produtos cosméticos: Uma perspetiva da evolução em Portugal e na União Europeia. Acta Farm. Portuguesa. 2021, 10, 4–18. [Google Scholar]
- European Commission. Cosmetic Product Notification Portal|Mercado Interno, Indústria, Empreendedorismo e PME; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J.A.D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef]
Active Compound | Structure | Polymers Used as Micellar Carriers | Conclusions | Ref. |
---|---|---|---|---|
ANTI-AGEING | ||||
Oleanolic Acid | Poloxamer 407 | Enhanced wrinkle alleviation | [39] | |
CoQ10 | Oleyl-hyaluronan Hexyl-hyaluronan | Enhancement in skin hydration | [40] | |
ACNE VULGARIS | ||||
All-trans Retinoic Acid (Tretinoin) | Poly(ethylene glycol) conjugated phosphatidylethanolamine | Higher stability with slower drug oxidation | [20] | |
All-trans Retinoic Acid (Tretinoin) | Diblock methoxy-poly(ethylene glycol)-poly(hexyl-substituted lactic acid) | Higher efficiency than marketed formulations | [41] | |
Adapalene | D-α-tocopheryl polyethyleneglycol 1000 succinate | Targeted drug delivery capacity Higher efficiency at lower dose than marketed formulations | [42] | |
Benzoyl peroxide | Pluronic® F127 | Targeted drug delivery capacity | [43] | |
PSORIASIS | ||||
Tacrolimus | Diblock methoxy-poly(ethylene glycol)-poly(hexyl-substituted lactic acid) | Enhancement in skin drug deposition | [21] | |
Resveratrol | Pluronic® P123 Pluronic® F127 | Decrease in the cytokine levels | [23] | |
Silibinin | - | Reduction of psoriasis index area | [44] | |
FUNGAL INFECTIONS | ||||
Clotrimazole Fluconazole | Diblock Methoxy-poly(ethylene glycol)-poly(hexyl-substituted lactic acid) | Enhancement in skin drug deposition | [45] | |
Terconazole | Pluronic® P123 Pluronic® F127 Cremophor EL | Higher permeation Higher skin deposition | [46] | |
OTHER SKIN DISEASES AND CONDITIONS | ||||
Imiquimod | Diblock methoxy-poly(ethylene glycol)-)-hexyl-substituted lactide | Higher delivery efficiency at lower dose than the marketed formulation | [47] | |
Spironolactone | Diblock methoxy-poly(ethylene glycol)-poly(hexyl-substituted lactic acid) | Targeted drug delivery capacity | [48] |
Composition (w/w%) | PMO-G | PMO-H |
---|---|---|
Oleanolic Acid | 0.05 | 0.05 |
Capryol® 90 | 2 | 2 |
Poloxamer 407 | 6 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, A.; Jarak, I.; Santos, A.; Veiga, F.; Figueiras, A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials 2021, 14, 7278. https://doi.org/10.3390/ma14237278
Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials. 2021; 14(23):7278. https://doi.org/10.3390/ma14237278
Chicago/Turabian StyleParra, Ana, Ivana Jarak, Ana Santos, Francisco Veiga, and Ana Figueiras. 2021. "Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery" Materials 14, no. 23: 7278. https://doi.org/10.3390/ma14237278
APA StyleParra, A., Jarak, I., Santos, A., Veiga, F., & Figueiras, A. (2021). Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials, 14(23), 7278. https://doi.org/10.3390/ma14237278