Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cultivation of Diatom
2.3. Biogenesis of Ag-SiO2 Nanohybrid
2.4. Documentation of Morphological Changes in Ag Treated Diatoms
2.5. Extraction of Nanomaterials
2.6. Uv-Vis Spectroscopy
2.7. Elemental Composition and Electron Microscopic Analysis of Synthesized Particles
2.8. Fluorescent Microscopy
2.9. Catalytic Activity of Synthesized Nanostructures
3. Results
3.1. Culturing of Diatoms and Growth Determination
3.2. Associated Morphological Changes in Ag+ Exposed Gedaniella
3.3. Optical Measurements
3.4. Electron Microscopic Study
3.5. Elemental Composition
3.6. Fluorescent Microscopic Analysis
3.7. Catalytic Activity of Flower and Spherical Shaped Ag-SiO2 Nanohybrid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalwar, K.; Shan, D. Antimicrobial Effect of Silver Nanoparticles (AgNPs) and Their Mechanism: A Mini Review. Micro Nano Lett. 2018, 13, 277–280. [Google Scholar] [CrossRef]
- Ardakani, L.S.; Surendar, A.; Thangavelu, L.; Mandal, T. Silver nanoparticles (Ag NPs) as catalyst in chemical reactions. Synth. Commun. 2021, 51, 1516–1536. [Google Scholar]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Moon, K.S.; Lu, J.; Wong, C.P. Conductivity enhancement of nano silver-filled conductive adhesives by particle surface functionalization. J. Electr. Mater. 2005, 34, 1432–1439. [Google Scholar] [CrossRef]
- Kühr, S.; Schneider, S.; Meisterjahn, B.; Schlich, K.; Hund-Rinke, K.; Schlechtriem, C. Silver nanoparticles in sewage treatment plant effluents: Chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca. Environ. Sci. Eur. 2018, 30, 7. [Google Scholar] [CrossRef]
- Shim, I.K.; Lee, Y.I.; Lee, K.J.; Joung, J. An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing. Mater. Chem. Phys. 2008, 110, 316–321. [Google Scholar] [CrossRef]
- Lizoń, A.; Wytrwal-Sarna, M.; Gajewska, M.; Drożdż, R. Silver Nanoparticle-Based Assay for the Detection of Immunoglobulin Free Light Chains. Materials 2019, 12, 2981. [Google Scholar] [CrossRef] [Green Version]
- Starowicz, Z.; Kulesza-Matlak, G.; Lipiński, M. Optimization Studies on Enhanced Absorption in Thin Silicon Solar Cell by Plasmonic Silver Nanoparticles for the Front Side Configuration. Plasmonics 2015, 10, 1639–1647. [Google Scholar] [CrossRef]
- Pavoski, G.; Baldisserotto, D.L.; Maraschin, T.; Brum, L.F.; Santos, C.; Santos, J.H.; Brandelli, A.; Galland, G.B. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. Eur. Polym. J. 2019, 117, 38–54. [Google Scholar] [CrossRef]
- Hu, M.; Yan, X.; Hu, X.; Feng, R.; Zhou, M. Synthesis of silver decorated silica nanoparticles with rough surfaces as adsorbent and catalyst for methylene blue removal. J. Sol. Gel Sci. Technol. 2019, 89, 754–763. [Google Scholar] [CrossRef]
- Elisa, P.; Sylvain, L.G.; Encarnacion, T.; Guido, M.; Christine, C.V.; Stéphane, B. Mesopore Formation and Silicon Surface Nanostructuration by Metal-Assisted Chemical Etching with Silver Nanoparticles. Front. Chem. 2020, 8, 658. [Google Scholar]
- Gulturk, E.; Guden, M. Thermal and acid treatment of diatom frustules. JAMME 2011, 46, 196–203. [Google Scholar]
- Vona, D.; Cicco, S.; Ragni, R.; Leone, G.; Lo Presti, M.; Farinola, G. Biosilica/polydopamine/silver nanoparticles composites: New hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Commun. 2018, 8, 911–917. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mater. Sci. Eng. C 2008, 28, 107–118. [Google Scholar] [CrossRef]
- Mishra, B.; Saxena, A.; Tiwari, A. Biosynthesis of silver nanoparticles from marine diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and their antibacterial study. Biotechnol. Rep. 2020, 28, e00571. [Google Scholar] [CrossRef] [PubMed]
- Chetia, L.; Kalita, D.; Ahmed, G.A. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens. Biosens. Res. 2017, 16, 55–61. [Google Scholar] [CrossRef]
- Bose, R.; Roychoudhury, P.; Pal, R. In-situ green synthesis of fluorescent silica–silver conjugate nanodendrites using nanoporous frustules of diatoms: An unprecedented approach. Bioprocess Biosyst. Eng. 2021, 44, 1263–1273. [Google Scholar] [CrossRef]
- Shende, P.; Kasture, P.; Gaud, R.S. Nanoflowers: The future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Deng, C.; Shi, H.; Zhou, B.; Li, Y.; Liu, T.; Wang, W. ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Appl. Opt. 2016, 55, 9105–9112. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Li, Z.; Zhang, S.; Wu, H.; Jiang, Z.; Yang, C.; Tian, C. Facile one-pot preparation of chitosan/ calcium pyrophosphate hybrid microflowers. ACS Appl. Mater. Interfaces 2014, 6, 14522–14532. [Google Scholar] [CrossRef]
- Ye, R.; Zhu, C.; Song, Y.; Lu, Q.; Ge, X.; Yang, X.; Zhu, M.J.; Du, D.; Li, H.; Lin, Y. Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 2016, 12, 3094–3100. [Google Scholar] [CrossRef]
- Kharisov, I.B. A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2008, 2, 190–200. [Google Scholar] [CrossRef]
- Lee, S.W.; Cheon, S.A.; Kim, M.I.; Park, T.J. Organic–inorganic hybrid nanoflowers: Types, characteristics, and future prospects. J. Nanobiotechnol. 2015, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Huang, J.; Liu, J.; Zhang, H.; Jiang, J.; Yu, R. A Dual Enzyme–Inorganic Hybrid Nanoflower Incorporated Microfluidic Paper-Based Analytic Device (ΜPAD) Biosensor for Sensitive Visualized Detection of Glucose. Nanoscale 2017, 9, 5658–5663. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Yeon, J.K.; Wang, C.; Mathiyalagan, R.; Yang, D.C. Microbial synthesis of flowershaped gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.M.; Singh, S.P.; Singh, R. Flower Shaped Gold Nanoparticles: Biogenic Synthesis Strategies and Characterization. Indian J. Microbiol. 2019, 59, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Selvaraj, R.; Arivalagan, P.; Varadavenkatesan, T. Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B 2020, 203, 111760. [Google Scholar] [CrossRef]
- Siddiqui, H.; Qureshi, M.S.; Haque, F.Z. Biosynthesis of Flower-Shaped CuO Nanostructures and Their Photocatalytic and Antibacterial Activities. Nanomicro. Lett. 2020, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Ponsanti, K.; Tangnorawich, B.; Ngernyuang, N.; Pechyen, C. A flower shape-green synthesis and characterization of silver nanoparticles (AgNPs) with different starch as a reducing agent. J. Mater. Res. Technol. 2020, 9, 11003–11012. [Google Scholar] [CrossRef]
- Gola, D.; Kriti, A.; Bhatt, N.; Bajpai, M.; Singh, A.; Arya, A.; Chauhan, N.; Srivastava, S.K.; Tyagi, P.K.; Agrawal, Y. Silver nanoparticles for enhanced dye degradation. CRGSC 2021, 4, 100132. [Google Scholar] [CrossRef]
- Saha, R.K.; Debanath, M.K.; Paul, B.; Medhi, S.; Saikia, E. Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci. Rep. 2020, 10, 2598. [Google Scholar] [CrossRef] [PubMed]
- Bruna, N.; Collao, B.; Tello, A.; Caravantes, P.; Díaz-Silva, N.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Flores, M.; Espinoza-Gonzalez, R.; Bravo, D.; et al. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci. Rep. 2019, 9, 1953. [Google Scholar] [CrossRef] [PubMed]
- Coll, J.L. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine 2011, 6, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álamo, P.; Pallarès, V.; Céspedes, M.V.; Falgàs, A.; Sanchez, J.M.; Serna, N.; Sánchez-García, L.; Voltà-Duràn, E.; Morris, G.A.; Sánchez-Chardi, A.; et al. Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics 2020, 12, 1004. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Battocchio, C.; Iucci, G.; Catone, D.; Cartoni, A.; Paladini, A.; O’Keeffe, P.; Nappini, S.; Cerra, S.; Venditti, I. Silver Nanoparticles Functionalized by Fluorescein Isothiocyanate or Rhodamine B Isothiocyanate: Fluorescent and Plasmonic Materials. Appl. Sci. 2021, 11, 2472. [Google Scholar] [CrossRef]
- Del Carmen Travieso Novelles, M.; Ortega, A.R.; Pita, B.A.; López, M.C.; Pérez, L.D.; Medina, E.A.; Pérez, O.P. Biosynthesis of fluorescent silver nanoparticles from Leea coccinea leaves and their antibacterial potentialities against Xanthomonas phaseoli pv phaseoli. Bioresour. Bioprocess 2021, 8, 3. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, D.; Zeng, Y.; Wan, Y. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection. Talanta 2016, 147, 142–146. [Google Scholar] [CrossRef]
- Fokkema, J.; Fermie, J.; Liv, N.; Heuvel, D.J.V.D.; Konings, T.O.M.; Blab, G.A.; Meijerink, A.; Klumperman, J.; Gerritsen, H.C. Fluorescently Labelled Silica Coated Gold Nanoparticles as Fiducial Markers for Correlative Light and Electron Microscopy. Sci. Rep. 2018, 8, 13625. [Google Scholar] [CrossRef] [Green Version]
- Setaro, A.; Lettieri, S.; Maddalena, P.; De Stefano, L. Highly sensitive optochemical gas detection by luminescent marine diatoms. Appl. Phys. Lett. 2007, 91, 051921. [Google Scholar] [CrossRef]
- Chunlian, Li.; Witkowski, A.; Ashworth, M.P.; Dabek, P.; Sato, S.; Zglobicka, I.; Witak, M.; Khim, J.S.; Kwon, Ch.-J. The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relatioship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa 2018, 355, 1–104. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms.1. Cyclotella nana hustedt, and detonula confervacea (cleve) gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Edler, L.; Elbrächter, M. The Utermöhl method for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; Karlson, B., Cusack, C., Bresnan, E., Eds.; UNESCO: Paris, France, 2010; pp. 13–20. [Google Scholar]
- Garcí, M.C.; Sevilla, J.F.; Fernández, F.A.; Grima, E.M.; Camacho, F.G. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: Growth rate and fatty acid profile. J. Appl. Phycol. 2000, 12, 239–248. [Google Scholar] [CrossRef]
- Fairuzi, A.A.; Bonnia, N.N.; Akhir, R.M.; Abrani, M.A.; Akil, H.M. Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract. Earth Environ. Sci. 2018, 105, 012018. [Google Scholar]
- Roychoudhury, P.; Nandi, C.; Pal, R. Diatom-based biosynthesis of gold-silica nanocomposite and their DNA binding affinity. J. Appl. Phycol. 2016, 28, 2857–2863. [Google Scholar] [CrossRef]
- Lengke, M.F.; Fleet, M.E.; Southam, G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a Silver (I) nitrate complex. Langmuir 2007, 23, 2694–2699. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Bhattacharya, A. Analysis on Synthesis of Silica Nanoparticles and its Effect on Growth of T. Harzianum & Rhizoctonia Species. Biomed. J. Sci. Tech. Res. 2018, 10, 7890–7897. [Google Scholar]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Borase, H.P.; Patil, C.D.; Suryawanshi, R.K.; Koli, S.H.; Mohite, B.V.; Benelli, G.; Patil, S.V. Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity. Bioproc. Biosyst. Eng. 2017, 40, 1437–1446. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Dąbek, P.; Gloc, M.; Golubeva, A.; Dobrucka, R.; Kurzydłowski, K.; Witkowski, A. Reducing Efficiency of Fucoxanthin in Diatom Mediated Biofabrication of Gold Nanoparticles. Materials 2021, 14, 4094. [Google Scholar] [CrossRef]
- Schrofel, A.; Kratošová, G.; Bohunická, M.; Dobročka, E.; Vávra, I. Biosynthesis of gold nanoparticles using diatoms—silica gold and EPS-gold bionanocomposite formation. J. Nanopart Res. 2011, 13, 3207–3216. [Google Scholar] [CrossRef] [Green Version]
- Kroger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Biosilica morphogenesis requires silaffin phosphorylation. Science 2002, 298, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Martin-Jézéquel, V.; Hildebrand, M.; Brzezinski, M.A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840. [Google Scholar] [CrossRef]
- Mohandass, C.; Vijayaraj, A.; Rajasabapathy, R.; Satheeshbabu, S.; Rao, S.; Shiva, C.; De-Mello, I. Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity. Indian J. Pharm. Sci. 2013, 75, 606. [Google Scholar] [PubMed]
- Devi, J.S.; Bhimba, B.V.; Peter, D.M. Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J. Geomarine Sci. 2013, 42, 125–130. [Google Scholar]
- Parial, D.; Patra, H.K.; Dasgupta, A.K.; Pal, R. Screening of different algae for green synthesis of gold nanoparticles. Eur. J. Phycol. 2012, 47, 22–29. [Google Scholar] [CrossRef]
- Santhoshkumar, R.; Hima Parvathy, A.; Soniya, E.V. Phytosynthesis of silver nanoparticles from aqueous leaf extracts of Piper colubrinum: Characterisation and catalytic activity. J. Exp. Nanosci. 2021, 6, 295–309. [Google Scholar] [CrossRef]
- Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. 2014, 2014, 742346. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roychoudhury, P.; Golubeva, A.; Dąbek, P.; Gloc, M.; Dobrucka, R.; Kurzydłowski, K.; Witkowski, A. Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. Materials 2021, 14, 7284. https://doi.org/10.3390/ma14237284
Roychoudhury P, Golubeva A, Dąbek P, Gloc M, Dobrucka R, Kurzydłowski K, Witkowski A. Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. Materials. 2021; 14(23):7284. https://doi.org/10.3390/ma14237284
Chicago/Turabian StyleRoychoudhury, Piya, Aleksandra Golubeva, Przemysław Dąbek, Michał Gloc, Renata Dobrucka, Krzysztof Kurzydłowski, and Andrzej Witkowski. 2021. "Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid" Materials 14, no. 23: 7284. https://doi.org/10.3390/ma14237284
APA StyleRoychoudhury, P., Golubeva, A., Dąbek, P., Gloc, M., Dobrucka, R., Kurzydłowski, K., & Witkowski, A. (2021). Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. Materials, 14(23), 7284. https://doi.org/10.3390/ma14237284