Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, G.H.; Zhao, J.; Hicks, E.M.; Schatz, G.C.; Van Duyne, R.P. Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2007, 7, 1947–1952. [Google Scholar] [CrossRef]
- Zhao, J.; Das, A.; Zhang, X.; Schatz, G.C.; Sligar, S.G.; Van Duyne, R.P. Resonance Surface Plasmon Spectroscopy: Low Molecular Weight Substrate Binding to Cytochrome P450. J. Am. Chem. Soc. 2006, 128, 11004–11005. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.M.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Haes, A.J.; Zou, S.; Zhao, J.; Schatz, G.C.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 2006, 128, 10905–10914. [Google Scholar] [CrossRef]
- Haes, A.J.; Hall, W.P.; Chang, L.; Klein, W.L.; Van Duyne, R.P. A Localized Surface Palsmon Resonance Biosensor: First Steps toward an Assay for Alzheimer’s Disease. Nano Lett. 2004, 4, 1029–1034. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Zheng, P.; Tang, H.; Liu, B.; Kasani, S.; Huang, L.; Wu, N. Origin of strong and narrow localized surface plasmon resonance of copper nanocubes. Nano Res. 2015, 12, 63–68. [Google Scholar] [CrossRef]
- Kawamura, G.; Alvarez, S.; Stewart, I.E.; Catenacci, M.; Chen, Z.; Ha, Y.-C. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Sci. Rep. 2015, 5, 18333. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [Green Version]
- McPeak, K.M.; Jaynati, S.V.; Kress, S.J.P.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Burge, D.K.; Jasperson, S.N.; Ashley, E.J. Residual gas and the optical properties of silver films. Surf. Sci. 1975, 50, 407–433. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Burlington, MA, USA, 1997. [Google Scholar]
- Rakić, A.D. Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum. Appl. Opt. 1995, 34, 4755–4767. [Google Scholar] [CrossRef] [PubMed]
- Rerek, T.; Skowronski, L.; Kobierski, M.; Naparty, M.K.; Derkowska-Zielinska, B. Microstructure and opto-electronic properties of Sn-rich Au-Sn diffusive solders. Appl. Surf. Sci 2018, 451, 32–39. [Google Scholar] [CrossRef]
- Rerek, T.; Skowronski, L.; Szczesny, R.; Naparty, M.K.; Derkowska-Zielinska, B. The effect of the deposition rate on microstructural and opto-electronic properties of β-Sn layers. Thin Solid Film. 2019, 670, 86–92. [Google Scholar] [CrossRef]
- Rerek, T.; Skowronski, L.; Szczesny, R.; Naparty, M.K.; Derkowska-Zielinska, B. The effect of the deposition rate on morphology, opto-electronic properties and formation intermetallic compounds of Au-Sn alloys. J. Alloy. Compd. 2020, 849, 156041. [Google Scholar] [CrossRef]
- Blaber, M.G.; Arnold, M.D.; Ford, M.J. A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 2010, 22, 143201. [Google Scholar] [CrossRef] [PubMed]
- Mardiansyah, D.; Badloe, T.; Triyana, K.; Mehmood, M.Q.; Raeis-Hosseini, R.; Lee, Y.; Sabarman, H.; Kim, K.; Rho, J. Efect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating. Sci. Rep. 2018, 8, 10639. [Google Scholar] [CrossRef] [Green Version]
- ICDD. (ICDD 00-001-0787) Powder Diffraction File; International Center for Diffraction Data: Newton Square, PA, USA, 1998. [Google Scholar]
- Vinila, S.V.; Jacob, R.; Mony, A.; Nair, H.G.; Issac, S.; Rajan, S.; Nair, A.S.; Isac, J. XRD Studies on Nano Crystalline Ceramic Superconductor PbSrCaCuO at Different Treating Temperatures. Cryst. Struct. Theory Appl. 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. J. Phys. Chem. C 2008, 112, 1101–1108. [Google Scholar] [CrossRef]
- J.A. Woollam Co., Inc. Guide to Using WVASE32®; Wextech Systems Inc.: New York, NY, USA, 2010. [Google Scholar]
- Fujiwara, H. Spectroscopic Ellipsometry. Principles and Applications, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Rioux, D.; Vallières, S.; Besner, S.; Muñoz, P.; Mazur, E.; Meunier, M. An Analytic Model for the Dielectric Function of Au, Ag, and their Alloys. Adv. Opt. Mater. 2014, 2, 176–182. [Google Scholar] [CrossRef]
- Guerrero, A.H.; Fasoli, H.J.; Costa, J.L. Why Gold and Copper Are Colored but Silver Is Not. J. Chem. Educ. 1999, 76, 200. [Google Scholar] [CrossRef]
Sample | (nm) | (nm) | (nm) |
---|---|---|---|
Cu(35) v = 5.0 Å/s | 0.93 ± 0.02 | 0.75 ± 0.02 | 7.6 |
Cu(35) v = 0.5 Å/s | 1.37 ± 0.04 | 1.08 ± 0.03 | 12.7 |
Cu(25) v = 5.0 Å/s | 0.71 ± 0.02 | 0.88 ± 0.01 | 6.6 |
Cu(25) v = 0.5 Å/s | 1.35 ± 0.02 | 1.05 ± 0.02 | 14.4 |
Cu(12) v = 5.0 Å/s | 0.40 ± 0.10 | 0.30 ± 0.10 | 6.1 |
Cu(12) v = 0.5 Å/s | 0.90 ± 0.10 | 0.67 ± 0.05 | 13.3 |
Sample | (nm) | (eV) | (eV) | (fs) | (cm) |
---|---|---|---|---|---|
Cu(35) v = 5.0 Å/s | 49.9 ± 0.2 | 8.34 ± 0.01 | 0.0567 ± 0.0009 | 11.60 ± 0.20 | 6.1 ± 0.1 |
Cu(35) v = 0.5 Å/s | 47.3 ± 0.1 | 6.32 ± 0.02 | 0.0586 ± 0.0024 | 11.20 ± 0.50 | 10.9 ± 0.5 |
Cu(25) v = 5.0 Å/s | 31.9 ± 0.2 | 8.42 ± 0.01 | 0.0684 ± 0.0010 | 9.63 ± 0.15 | 7.2 ± 0.1 |
Cu(25) v = 0.5 Å/s | 37.3 ± 0.5 | 6.92 ± 0.02 | 0.0835 ± 0.0016 | 7.88 ± 0.15 | 13.0 ± 0.3 |
Cu(12) v = 5.0 Å/s | 15.1 ± 0.1 | 8.13 ± 0.02 | 0.0758 ± 0.0007 | 8.68 ± 0.08 | 8.5 ± 0.1 |
Cu(12) v = 0.5 Å/s | 18.1 ± 0.1 | 5.18 ± 0.28 | 0.8160 ± 0.0970 | 0.81 ± 0.10 | 226 ± 36 |
Sample | ||||||
---|---|---|---|---|---|---|
650 nm | 1000 nm | 1550 nm | 650 nm | 1000 nm | 1550 nm | |
Cu(35) v = 5.0 Å/s | 12.6 | 16.1 | 13.0 | 231.7 | 627.6 | 1330.9 |
Cu(35) v = 0.5 Å/s | 1.7 | 1.6 | 4.2 | 19.6 | 30.3 | 202.1 |
Cu(25) v = 5.0 Å/s | 10.8 | 13.4 | 10.8 | 200.1 | 531.9 | 1119.8 |
Cu(25) v = 0.5 Å/s | 2.5 | 2.1 | 3.3 | 37.2 | 57.2 | 199.4 |
Cu(12) v = 5.0 Å/s | 8.1 | 11.4 | 9.6 | 129.5 | 407.5 | 915.0 |
Cu(12) v = 0.5 Å/s | 0.9 | 0.7 | 0.1 | 8.4 | 11.5 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rerek, T.; Derkowska-Zielinska, B.; Trzcinski, M.; Szczesny, R.; Naparty, M.K.; Skowronski, L. Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers. Materials 2021, 14, 7292. https://doi.org/10.3390/ma14237292
Rerek T, Derkowska-Zielinska B, Trzcinski M, Szczesny R, Naparty MK, Skowronski L. Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers. Materials. 2021; 14(23):7292. https://doi.org/10.3390/ma14237292
Chicago/Turabian StyleRerek, Tomasz, Beata Derkowska-Zielinska, Marek Trzcinski, Robert Szczesny, Mieczyslaw K. Naparty, and Lukasz Skowronski. 2021. "Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers" Materials 14, no. 23: 7292. https://doi.org/10.3390/ma14237292
APA StyleRerek, T., Derkowska-Zielinska, B., Trzcinski, M., Szczesny, R., Naparty, M. K., & Skowronski, L. (2021). Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers. Materials, 14(23), 7292. https://doi.org/10.3390/ma14237292