Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity
Abstract
:1. Introduction
2. Resonant Characteristics of Individual SRR and PCNC
3. Magnetic Dipole Mode Excitation: Strong Coupling between SRR and PCNC
4. Effect of Relative Position and Angle between SRR and PCNC
5. All Integrated On-Chip Excitation of Magnetic Dipole Mode of SRR
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Maier, S.A. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 2006, 14, 1957. [Google Scholar] [CrossRef]
- Tam, F.; Goodrich, G.P.; Johnson, B.R.; Halas, N.J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P.; Oddershede, L.B. Plasmonic Heating of Nanostructures. Chem. Rev. 2019, 119, 8087–8130. [Google Scholar] [CrossRef] [PubMed]
- Maragò, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Blaize, S.; Salas-Montiel, R. Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics. Nanoscale 2019, 11, 20685–20692. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Blaize, S.; Seok, J.; Kim, S.; Yang, H.; Salas-Montie, R. Plasmonic-Based Subwavelength Graphene-on-hBN Modulator on Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Barth, M.; Schietinger, S.; Fischer, S.; Becker, J.; Nusse, N.; Aichele, T.; Lochel, B.; Sönnichsen, C.; Benson, O. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett. 2010, 10, 891–895. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.C.; Liu, Y.; Wang, C.; Zhang, N.; Lu, C. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V. Opt. Lett. 2020, 45, 4794–4797. [Google Scholar] [CrossRef]
- Zhang, T.; Callard1, S.; Jamois, C.; Chevalier, C.; Feng, D.; Belarouci, A. Plasmonic-photonic crystal coupled nanolaser. Nanotechnology 2014, 25, 315201. [Google Scholar] [CrossRef]
- Mossayebi, M.; Parini, A.; Wright, A.J.; Somekh, M.G.; Bellanca, G.; Larkins, E. Hybrid photonic-plasmonic platform for high- throughput single-molecule studies. Opt. Mater. Express 2019, 9, 2511–2522. [Google Scholar] [CrossRef]
- Eter, A.E.; Grosjean, T.; Viktorovitch, P.; Letartre, X.; Benyattou, T.; Baida, F.I. Huge light-enhancement by coupling a bowtie nano-antenna’s plasmonic resonance to a photonic crystal mode. Opt. Express 2014, 22, 14464. [Google Scholar] [CrossRef] [PubMed]
- Angelis, F.D.; Das, G.; Candeloro, P.; Patrini, M.; Galli, M.; Bek, A.; Lazzarino, M.; Maksymov, I.; Liberale, C.; Andreani, L.C.; et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 2010, 5, 67–72. [Google Scholar] [CrossRef]
- Cognée, K.G.; Doeleman, H.M.; Lalanne, P.; Koenderink, A.F. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light Sci. Appl. 2019, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Chamanzar, M.; Xia, Z.; Yegnanarayanan, S.; Adibi, A. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt. Express 2013, 21, 32086. [Google Scholar] [CrossRef] [PubMed]
- Chamanzar, M.; Adibi, A. Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt. Express 2011, 19, 22292. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.S.; Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 2005, 13, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Tanabe, K.; Iwamoto, S.; Arakawa, Y. High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity. Opt. Express 2010, 18, 8144–8150. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 2015, 90, 065504. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Appl. Phys. B 2015, 121, 297–305. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaz, T.; Cassan, E.; Bouchemat, M. Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik 2015, 126, 3467–3471. [Google Scholar] [CrossRef]
- Nakamura, T.; Takahashi, Y.; Tanaka, Y.; Asano, T.; Noda, S. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components. Opt. Express 2016, 24, 9541–9549. [Google Scholar] [CrossRef] [PubMed]
- Kassa-Baghdouche, L.; Cassan, E. Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides. Photonics Nanostruct.-Fundam. Appl. 2018, 28, 32. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L. High-sensitivity spectroscopic gas sensor using optimized H1 photonic crystal microcavities. J. Opt. Soc. Am. B 2020, 37, A277–A284. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L. Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 2020, 95, 015502. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [Green Version]
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [Green Version]
- Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C.M. Magnetic response of metamaterials at 100 terahertz. Science 2004, 306, 1351–1353. [Google Scholar] [CrossRef] [Green Version]
- Vourc’h, E.; Joubert, P.-Y. Analytical and numerical analyses of a current sensor using non linear effects in a flexible magnetic transducer. Prog. Electromagn. Res. 2009, 99, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.W.; Enkrich, C.; Wegener, M.; Linden, S. Second-harmonic generation from magnetic metamaterials. Science 2006, 313, 502–504. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Guo, H.; Fu, L.; Schweizer, H.; Kaiser, S.; Giessen, H. Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region. Phys. Status Solidi B 2007, 244, 1251–1255. [Google Scholar] [CrossRef]
- Fang, L.; Gan, X.; Zhao, J. High-Q factor photonic crystal cavities with cut air holes. Chin. Opt. Lett. 2020, 18, 86–92. [Google Scholar]
- Sünner, T.; Stichel, T.; Kwon, S.-H.; Schlereth, T.W.; Höfling, S.; Kamp, M.; Forchel, A. Photonic crystal cavity based gas sensor. Appl. Phys. Lett. 2008, 92, 26112. [Google Scholar] [CrossRef]
- Jágerská, J.; Zhang, H.; Diao, Z.; Thomas, N.L.; Houdré, R. Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 2010, 35, 2523–2525. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Ishikawa, A.; Kawata, S. Negative Permeability of Single-ring Split Ring Resonator in the Visible Light Frequency Region. Mater. Res. Soc. Symp. Proc. 2006, 919, 0919-J03-08. [Google Scholar] [CrossRef]
- Linden, S.; Enkrich, C.; Dolling, G.; Klein, M.W.; Zhou, J.; Koschny, T.; Soukoulis, C.M.; Burger, S.; Schmidt, F.; Wegener, M. Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Rockstuhl, C.; Zentgraf, T.; Guo, H.; Liu, N.; Etrich, C.; Loa, I.; Syassen, K.; Kuhl, J.; Lederer, F.; Giessen, H. Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B Lasers Opt. 2006, 84, 219–227. [Google Scholar] [CrossRef]
- Vignolini, S.; Intonti, F.; Riboli, F.; Balet, L.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Wiersma, D.S.; Gurioli, M. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 2010, 105, 123902. [Google Scholar] [CrossRef] [Green Version]
- Lalouat, L.; Cluzel, B.; Velha, P.; Picard, E.; Peyrade, D.; Hugonin, J.P.; Lalanne, P.; Hadji, E.; de Forne, F. Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity. Phys. Rev. B 2007, 76, 041102. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Fang, L.; Zhao, Q.; Wang, Y.; Mao, B.; Khayrudinov, V.; Lipsanen, H.; Sun, Z.; Zhao, J.; Gan, X. Mode couplings of a semiconductor nanowire scanning across a photonic crystal nanocavity. Chin. Opt. Lett. 2019, 17, 80–85. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Liang, D.; Bowers, J.E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light Adv. Manuf. 2021, 2, 5. [Google Scholar] [CrossRef]
- Hadad, Y.; Davoyan, A.R.; Engheta, N.; Steinberg, B.Z. Extreme and Quantized Magneto-optics with Graphene Meta-atoms and Metasurfaces. ACS Photonics 2014, 1, 1068–1073. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Chung, T.L.; Hsiao, H.-H.; Chen, J.; Lin, R.; Wu, P.; Sun, G.; Wang, C.; Misawa, H.; Tsai, D.P. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv. Mater. 2019, 31, 1806479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Murai, T.; Shoji, Y.; Mizumoto, T. All-Optical Switch by Light-to-Heat Conversion in Metal Deposited Si Ring Resonator. IEEE Photonics Technol. Lett. 2020, 32, 807–810. [Google Scholar] [CrossRef]
- Wu, J.; Yang, D.; Huang, X.; Li, Y.; Xia, Y. The design and experiment of a novel microwave gas sensor loaded with metamaterials. Phys. Lett. A 2021, 389, 127080. [Google Scholar] [CrossRef]
- Ning, C.Z. Semiconductor nanolasers and the size-Energy efficiency challenge: A review. Adv. Photonics 2019, 1, 014002. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Huang, Z.; Chen, Y.; Mou, C.; Lu, Y.; Xua, F. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Adv. Photonics 2020, 2, 026002. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Wang, B.; Fang, L.; Zhao, Q.; Xiao, F.; Gan, X. Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity. Materials 2021, 14, 7330. https://doi.org/10.3390/ma14237330
Ji Y, Wang B, Fang L, Zhao Q, Xiao F, Gan X. Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity. Materials. 2021; 14(23):7330. https://doi.org/10.3390/ma14237330
Chicago/Turabian StyleJi, Yingke, Binbin Wang, Liang Fang, Qiang Zhao, Fajun Xiao, and Xuetao Gan. 2021. "Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity" Materials 14, no. 23: 7330. https://doi.org/10.3390/ma14237330
APA StyleJi, Y., Wang, B., Fang, L., Zhao, Q., Xiao, F., & Gan, X. (2021). Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity. Materials, 14(23), 7330. https://doi.org/10.3390/ma14237330