Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Analysis
2.3. Hygrothermal Performance
2.4. Environmental Impact Assessment
3. Results and Discussion
3.1. Materials Properties
3.2. Hygrothermal Performance
3.3. Environmental Impact Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Courland, R.; Smith, D. Concrete Planet: The Strange and Fascinating Story of the World’s Most Common Man-Made Material; Prometheus Books: Amherst, NY, USA, 2011. [Google Scholar]
- Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaría-López, J.M.; Honorato-Moreno, A.; Zamora-Castro, S.A. Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges. Materials 2019, 12, 3548. [Google Scholar] [CrossRef] [Green Version]
- Pasztetnik, M.; Wróblewski, R. A literature review of concrete ability to sustain strength after fire exposure based on the heat accumulation factor. Materials 2021, 14, 4719. [Google Scholar] [CrossRef]
- Stafford, F.N.; Raupp-Pereira, F.; Labrincha, J.; Hotza, D. Life cycle assessment of the production of cement: A Brazilian case study. J. Clean. Prod. 2016, 137, 1293–1299. [Google Scholar] [CrossRef]
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 emissions from China’s cement industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- Madlool, N.; Saidur, R.; Hossain, M.; Rahim, N.A. A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2042–2060. [Google Scholar] [CrossRef]
- Brocklesby, M.; Davison, J. The environmental impacts of concrete design, procurement and on-site use in structures. Constr. Build. Mater. 2000, 14, 179–188. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Dong, Y.H.; Xuan, D. Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renew. Sustain. Energy Rev. 2018, 82, 597–608. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Murali, G.; Avudaiappan, S.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Klyuev, S.; Gholampour, A. Fly ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials 2021, 14, 4264. [Google Scholar] [CrossRef]
- Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Rajasekaran, C. Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement. Adv. Concr. Constr. 2016, 4, 27–35. [Google Scholar]
- Jin, R.Y.; Chen, Q. Investigation of concrete recycling in the U.S. construction industry. Procedia Eng. 2015, 118, 894–901. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Effectiveness of hair and wave polypropylene fibers for concrete roads. Constr. Build. Mater. 2018, 166, 581–591. [Google Scholar] [CrossRef]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López-González, L.M. Study of the technical feasibility of increasing the amount of recycled concrete waste used in ready-mix concrete production. Materials 2017, 10, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Etxeberria, M.; Vázquez, E.; Mari, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Meddah, M.S. Recycled aggregates in concrete production: Engineering properties and environmental impact. In Proceedings of the 1st International Conference on Engineering, Science and Technology (SICEST), Kota Palembang, Indonesia, 9–10 November 2016. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN EN 12390-7, Testing Hardened Concrete—Part 7: Density of Hardened Concrete; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2020. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN EN 12664, Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Dry and Moist Products of Medium and Low Thermal Resistance; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2001. [Google Scholar]
- ASTM International. ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN EN ISO 12572, Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2001. [Google Scholar]
- Vejmelková, E.; Pavlíková, M.; Jerman, M.; Černý, R. Free water intake as means of material characterization. J. Build. Phys. 2009, 33, 29–44. [Google Scholar] [CrossRef]
- Czech Institute for Standards, Metrology and Testing. ČSN EN ISO 15148, Hygrothermal Performance of Building Materials and Products—Determination of Water Absorption Coefficient by Partial Immersion; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2004. [Google Scholar]
- Roels, S.; Carmeliet, J.J.; Hens, H.; Adan, O.O.; Brocken, H.H.; Cerny, R.; Pavlik, Z.; Hall, C.; Kumaran, K.; Pel, L.L.; et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004, 27, 307–325. [Google Scholar] [CrossRef]
- Czech Institute for Standards, Metrology and Testing. ČSN EN 12390-3, Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2020. [Google Scholar]
- Maděra, J.; Kočí, J.; Kočí, V.; Kruis, J. Parallel modeling of hygrothermal performance of external wall made of highly perforated bricks. Adv. Eng. Softw. 2017, 113, 47–53. [Google Scholar] [CrossRef]
- Jerman, M.; Černý, R. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build. 2012, 53, 39–46. [Google Scholar] [CrossRef]
- Kočí, V.; Maděra, J.; Jerman, M.; Žumár, J.; Koňáková, D.; Čáchová, M.; Vejmelková, E.; Reiterman, P.; Černý, R. Application of waste ceramic dust as a ready-to-use replacement of cement in lime-cement plasters: An environmental-friendly and energy-efficient solution. Clean Technol. Environ. Policy 2016, 18, 1725–1733. [Google Scholar] [CrossRef]
- Czech Institute for Standards, Metrology and Testing. ČSN EN ISO 15927-4, Hygrotermal Performance of Buildings—Calculation and Presentation of Climatic Data—Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2011. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN 730540-2, Thermal Protection of Buildings—Part 2: Requirements; Czech Office for Standards Metrology and Testing: Prague, Czech Republic, 2011. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN EN ISO 19011, Guidelines for Auditing Management Systems; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2019. [Google Scholar]
- Czech Institute for Standards, Metrology and Testing. ČSN EN ISO 14044, Environmental Management—Life Cycle Assessment—Requirements and Guidelines; Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2019. [Google Scholar]
- Kočí, J.; Fořt, J.; Kočí, V.; Hager, I. Assessment of environmental impact of coarse aggregates substitution by crushed pavements in concrete mixtures. In Proceedings of the MATEC Web of Conferences, 14 October 2020; Volume 322, p. 01036. Available online: https://doi.org/10.1051/matecconf/202032201036 (accessed on 25 November 2021).
- Borghi, G.; Pantini, S.; Rigamonti, L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy region (Italy). J. Clean. Prod. 2018, 184, 815–825. [Google Scholar] [CrossRef]
- Rapa, M.; Gobbi, L.; Ruggieri, R. Environmental and economic sustainability of electric vehicles: Life cycle assessment and life cycle costing evaluation of electricity sources. Energies 2020, 13, 6292. [Google Scholar] [CrossRef]
- Zilia, F.; Bacenetti, J.; Sugni, M.; Matarazzo, A.; Orsi, L. From waste to product: Circular economy applications from sea urchin. Sustainability 2021, 13, 5427. [Google Scholar] [CrossRef]
- Pedreño-Rojas, M.; Fořt, J.; Cerny, R.; Rubio-De-Hita, P. Life cycle assessment of natural and recycled gypsum production in the Spanish context. J. Clean. Prod. 2020, 253, 120056. [Google Scholar] [CrossRef]
- Kruszgeo, S.A. Dwudniaki Aggregates—Parameters. 2021. Available online: https://kruszgeo.com.pl/zek/dwudniaki.php (accessed on 13 October 2021).
- Krawczyk, B.; Szydlo, A.; Mackiewicz, P.; Dobrucki, D. Suitability of aggregate recycled from concrete pavements for layers made of unbound and cement bound mixtures. Roads Bridges 2018, 17, 39–53. [Google Scholar]
- Xuan, D.; Zhan, B.; Poon, C.S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem. Concr. Compos. 2016, 65, 67–74. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J.D. A comparative study of the mechanical and life cycle assessment of high-content fly ash and recycled aggregates concrete. J. Build. Eng. 2020, 29, 101173. [Google Scholar] [CrossRef]
- Fořt, J.; Černý, R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef]
REF | REC50 | REC100 | |
---|---|---|---|
CEM I 42.5 R (kg·m−3) | 414.2 | 414.2 | 414.2 |
Water (kg·m−3) | 186.4 | 186.4 | 186.4 |
Plasticizer BASF BV 18 (wt.%) | 0.9 | 0.9 | 0.9 |
Plasticizer BASF Glenium Sky 591 (wt.%) | 1.4 | 1.4 | 1.4 |
Natural fine aggregates 0/4 (kg·m−3) | 615.1 | 280.6 | 569.2 |
Natural coarse aggregates 2/8 (kg·m−3) | 579.9 | 280.6 | --- |
Natural coarse aggregates 8/16 (kg·m−3) | 562.3 | 264.1 | --- |
Recycled concrete aggregates 4/16 (kg·m−3) | --- | 825.3 | 1057.2 |
REF | REC50 | REC100 | ||
---|---|---|---|---|
Thermal conductivity (W·m−1·K−1) | dry | 2.41 | 1.84 | 2.08 |
saturated | 2.79 | 2.30 | 2.29 | |
Specific heat capacity | dry | 817 | 785 | 812 |
REF | REC50 | REC100 | ||
---|---|---|---|---|
Water vapor diffusion resistance factor (-) | dry-cup | 89.3 | 124.3 | 131.0 |
wet-cup | 42.9 | 58.6 | 66.6 | |
Sorption capacity at 97% (m3·m−3) | 9.09 | 10.99 | 10.49 | |
Moisture diffusivity (m2·s−1) | 7.13 ×·10−9 | 1.58 ×·10−8 | 1.46 ×·10−9 |
REF | REC50 | REC100 | ||
---|---|---|---|---|
Compressive strength (MPa) | 28 days | 46.1 | 56.8 | 54.5 |
90 days | 52.2 | 65.2 | 64.0 | |
Splitting tensile strength (MPa) | 3.3 | 3.6 | 3.4 |
Unit | REF | REC50 | REC100 | |
---|---|---|---|---|
Carcinogens (CA) | kg·C2H3Cl·eq | 0.207928 | 0.181762 | 0.160954 |
Non-carcinogens (NCA) | kg·C2H3Cl·eq | 0.376624 | 0.389560 | 0.305319 |
Respiratory organics (RO) | kg·C2H4·eq | 0.080252 | 0.071736 | 0.06861 |
Respiratory inorganics (RI) | kg·PM2.5·eq | 0.032686 | 0.031078 | 0.029436 |
Aquatic ecotoxicity (AE) | kg·TEG·water | 1235.460 | 1418.594 | 1020.719 |
Terrestrial ecotoxicity (TE) | kg·TEG·soil | 915.9246 | 793.4930 | 521.3207 |
Terrestrial acidification/nitrification (TA/N) | kg·SO2·eq | 2.372920 | 2.243352 | 2.181528 |
Aquatic acidification (AC) | kg·SO2·eq | 0.489180 | 0.463767 | 0.453614 |
Aquatic eutrophication (AEU) | kg·PO4·P-lim | 0.002552 | 0.001765 | 0.001274 |
Land occupation (LO) | m2·a | 0.936772 | 1.125691 | 0.813272 |
Mineral extraction (ME) | MJ·surplus | 0.686285 | 0.514924 | 0.390787 |
Non-renewable energy (NRE) | MJ·primary | 807.8142 | 816.8235 | 762.527 |
Ionizing radiation (RI) | Bq·C−14·eq | 384.3772 | 304.4095 | 262.7194 |
Ozone layer depletion (OLD) | kg·CFC−11·eq | 9.86 × 10−6 | 1.01 × 10−5 | 9.47 × 10−6 |
Global warming (GW) | kg·CO2·eq | 168.6626 | 168.5723 | 165.6829 |
Mixture | Environmental Costs Ec (mPt/MPa) | |
---|---|---|
28 Days | 90 Days | |
REF | 0.6793 | 0.5999 |
REC50 | 0.5091 | 0.4435 |
REC100 | 0.5128 | 0.4366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kočí, V.; Kočí, J.; Fořt, J.; Fiala, L.; Šál, J.; Hager, I.; Černý, R. Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts. Materials 2021, 14, 7361. https://doi.org/10.3390/ma14237361
Kočí V, Kočí J, Fořt J, Fiala L, Šál J, Hager I, Černý R. Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts. Materials. 2021; 14(23):7361. https://doi.org/10.3390/ma14237361
Chicago/Turabian StyleKočí, Václav, Jan Kočí, Jan Fořt, Lukáš Fiala, Jiří Šál, Izabela Hager, and Robert Černý. 2021. "Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts" Materials 14, no. 23: 7361. https://doi.org/10.3390/ma14237361
APA StyleKočí, V., Kočí, J., Fořt, J., Fiala, L., Šál, J., Hager, I., & Černý, R. (2021). Utilization of Crushed Pavement Blocks in Concrete: Assessment of Functional Properties and Environmental Impacts. Materials, 14(23), 7361. https://doi.org/10.3390/ma14237361