Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. LCA Model of GPC
2.2.1. Functional Unit and System Scope
2.2.2. Life Cycle Inventory Analysis (LCI)
- CO2 emissions of the raw materials production process.
- CO2 emissions of the transportation of raw materials.
- CO2 emissions of production: mixing, vibrating, and curing at 80 °C for 24 h.
2.2.3. Life Cycle Impact Assessment (LCIA)
2.3. Gray Relational Analysis (GRA)
- The sequence matrix for the gray relational model:Reference sequence:Compare sequence: ;
- Dimensionless processing of raw data:
- Difference sequence:
- Maximum and minimum of difference sequence:
- Gray relation coefficient:
- Gray relation degree:
3. Results
3.1. Interpretation and Comparison of GPC and OPC Concrete
3.2. Interpretation of MANOVA on GPC
- (1)
- Sig < 0.05, R2(a) was 0.999 and R2(b) was 0.962, which show strong positive correlation. The experimental error was deficient (0.1% and 3.8%), confirming that this model has an excellent fitting effect.
- (2)
- According to the sig values, it is concluded that the S/F ratio has a significant influence on CO2 emission (Sig = 0.000), which is followed by SS/SH (2 × 10−6) and CNaOH (1.6 × 10−4). As for compressive strength, CNaOH (Sig = 0.000) has a remarkable impact on it, which is followed by the SS/SH (Sig = 0.008) and S/F ratio (Sig= 0.050).
- (3)
- The percentage contribution in Figure 4 confirms the same conclusion.
3.3. Interpretation of GRA on GPC
4. Conclusions
- The CO2 emissions from the production of GPC are lower than those of OPC concrete at the same compressive strength. At 70 MPa, the CO2 emissions of GPC are reduced by 166.36 kg CO2/m3, which is approximately 62.73% of its carbon emissions.
- The CO2 emissions of OPC concrete were continuously increasing with the increase in compressive strength. However, there is no significant increase in CO2 emissions from high-strength grade GPC. GPC can effectively improve environmental impact without compromising strength.
- The CO2 emission of GPC mainly depends on the alkali activator solution, transportation, and heat curing. However, for OPC concrete, the CO2 emissions depend mainly on the amount of cement used.
- The three studied parameters showed different characteristics and degrees of influence on the compressive strength and CO2 emission. For compressive strength, the influence sequence was CNaOH > SS/SH > S/F. However, the effect of CO2 emissions was the opposite. Therefore, the mix proportion can be optimized to meet the strength requirements without ignoring the environmental issues.
- At 12 mol/L CNaOH, both the maximum improvement in compressive strength and environmental benefits were guaranteed. This is because the increase in compressive strength slows down with the increase in CNaOH after it reaches 12 mol/L, where its influence on CO2 emission was not significant.
- The effect of SS/SH ratio on CO2 emissions and compressive strength was the opposite. Therefore, a lower ratio can obtain higher compressive strength and further reduce CO2 emissions.
- When the workability of GPC is satisfied, the S/F ratio should be reduced as far as possible to meet the environmental benefits.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Hong, J.; Xu, C. Pollutants Generated by Cement Production in China, their Impacts, and the Potential for Environmental Improvement. J. Clean. Prod. 2015, 103, 61–69. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process with Alternative Technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Green Concrete Containing Diatomaceous Earth and Limestone: Workability, Mechanical Properties, and Life-Cycle Assessment. J. Clean. Prod. 2019, 223, 662–679. [Google Scholar] [CrossRef]
- Gursel, A.P.; Maryman, H.; Ostertag, C. A Life-Cycle Approach to Environmental, Mechanical, and Durability Properties of “Green” Concrete Mixes with Rice Husk Ash. J. Clean. Prod. 2016, 112, 823–836. [Google Scholar] [CrossRef]
- Crossin, E. The Greenhouse Gas Implications of Using Ground Granulated Blast Furnace Slag as a Cement Substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A Review On Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment On Buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, L.; Zhao, J.; Liu, L.; Zhong, S.; Sun, Y.; Yang, Y. Toward a Better Practice for Estimating the CO2 Emission Factors of Cement Production: An Experience from China. J. Clean. Prod. 2016, 139, 527–539. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison Between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Nguyen, L.; Moseson, A.J.; Farnam, Y.; Spatari, S. Effects of Composition and Transportation Logistics On Environmental, Energy and Cost Metrics for the Production of Alternative Cementitious Binders. J. Clean. Prod. 2018, 185, 628–645. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.; Ventura, A. LCA Allocation Procedure Used as an Incitative Method for Waste Recycling: An Application to Mineral Additions in Concrete. Resour. Conserv. Recycl. 2010, 54, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Nehdi, M.L.; Yassine, A. Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model. Materials 2020, 13, 4685. [Google Scholar] [CrossRef]
- Faridmehr, I.; Nehdi, M.L.; Nikoo, M.; Huseien, G.F.; Ozbakkaloglu, T. Life-Cycle Assessment of Alkali-Activated Materials Incorporating Industrial Byproducts. Materials 2021, 14, 2401. [Google Scholar] [CrossRef]
- Pryshlakivsky, J.; Searcy, C. Fifteen Years of ISO 14040: A Review. J. Clean. Prod. 2013, 57, 115–123. [Google Scholar] [CrossRef]
- Kawai, K.; Sugiyama, T.; Kobayashi, K.; Sano, S. Inventory Data and Case Studies for Environmental Performance Evaluation of Concrete Structure Construction. J. Adv. Concr. Technol. 2005, 3, 435–456. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Y.; Shao, S.; Sui, X.W.; Zhang, X.X. Life cycle assessment of thermal power plant based on circulating flu-idized bed combustion technology. Chin. J. Environ. Eng. 2014, 8, 2133–2140. [Google Scholar]
- Shobeiri, V.; Bennett, B.; Xie, T.; Visintin, P. A Comprehensive Assessment of the Global Warming Potential of Geopolymer Concrete. J. Clean. Prod. 2021, 297, 126669. [Google Scholar] [CrossRef]
- Meshram, R.B.; Kumar, S. Comparative Life Cycle Assessment (LCA) of Geopolymer Cement Manufacturing with Portland Cement in Indian Context. Int. J. Environ. Sci. Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Ulloa, N.; Baykara, H.; Boero, A.J. Life Cycle Assessment of Geopolymer Concrete. Constr. Build. Mater. 2018, 190, 170–177. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Singh, M. Environmental Impact Assessment of Fly Ash and Silica Fume Based Geopolymer Concrete. J. Clean. Prod. 2020, 254, 120147. [Google Scholar] [CrossRef]
- Diaz, E.I.; Allouche, E.N.; Eklund, S. Factors Affecting the Suitability of Fly Ash as Source Material for Geopolymers. Fuel 2010, 89, 992–996. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chalee, W. Effect of Sodium Hydroxide Concentration on Chloride Penetration and Steel Corrosion of Fly Ash-Based Geopolymer Concrete Under Marine Site. Constr. Build. Mater. 2014, 63, 303–310. [Google Scholar] [CrossRef]
- Sumer, M. Compressive Strength and Sulfate Resistance Properties of Concretes Containing Class F and Class C Fly Ashes. Constr. Build. Mater. 2012, 34, 531–536. [Google Scholar] [CrossRef]
- Van den Heede, P.; De Belie, N. Environmental Impact and Life Cycle Assessment (LCA) of Traditional and ‘Green’ Concretes: Literature Review and Theoretical Calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Lee, S.; Seo, M.; Kim, Y.; Park, H.; Kim, T.; Hwang, Y.; Cho, S. Unburned Carbon Removal Effect On Compressive Strength Development in a Honeycomb Briquette Ash-Based Geopolymer. Int. J. Miner. Process. 2010, 97, 20–25. [Google Scholar] [CrossRef]
- Huseien, G.F.; Ismail, M.; Khalid, N.H.A.; Hussin, M.W.; Mirza, J. Compressive Strength and Microstructure of Assorted Wastes Incorporated Geopolymer Mortars: Effect of Solution Molarity. Alex. Eng. J. 2018, 57, 3375–3386. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated Ground Fly Ash Geopolymer Cured at Ambient Temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- de Vargas, A.S.; Dal Molin, D.C.C.; Vilela, A.C.F.; Silva, F.J.D.; Pavão, B.; Veit, H. The Effects of Na2O/SiO2 molar Ratio, Curing Temperature and Age On Compressive Strength, Morphology and Microstructure of Alkali-Activated Fly Ash-Based Geopolymers. Cem. Concr. Compos. 2011, 33, 653–660. [Google Scholar] [CrossRef]
- Jafari Nadoushan, M.; Ramezanianpour, A.A. The Effect of Type and Concentration of Activators On Flowability and Compressive Strength of Natural Pozzolan and Slag-Based Geopolymers. Constr. Build. Mater. 2016, 111, 337–347. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Structural Performance of Reinforced Geopolymer Concrete Members: A Review. Constr. Build. Mater. 2016, 120, 251–264. [Google Scholar] [CrossRef]
- Lokuge, W.; Wilson, A.; Gunasekara, C.; Law, D.W.; Setunge, S. Design of Fly Ash Geopolymer Concrete Mix Proportions Using Multivariate Adaptive Regression Spline Model. Constr. Build. Mater. 2018, 166, 472–481. [Google Scholar] [CrossRef]
- Reig, L.; Soriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J. Influence of the Activator Concentration and Calcium Hydroxide Addition On the Properties of Alkali-Activated Porcelain Stoneware. Constr. Build. Mater. 2014, 63, 214–222. [Google Scholar] [CrossRef]
Materials | Carbon Emission Factor | Units |
---|---|---|
Fine aggregates | 2.820 × 10−3 | Kg CO2/kg |
Coarse aggregates | 2.440 × 10−3 | Kg CO2/kg |
Water | 1.891 × 10−4 | Kg CO2/kg |
Sodium silicate | 1.247 | Kg CO2/kg |
Sodium hydroxide | 1.448 | Kg CO2/kg |
OPC (average markets of China) | 7.310 × 10−1 | Kg CO2/kg |
Concrete reducing water agent | 3.000 | Kg CO2/kg |
Materials | Means of Transport | Distance | Carbon Emission Factor | Units |
---|---|---|---|---|
Fine aggregates | Medium diesel truck (8 t) | 20 km | 0.149 | Kg CO2/tkm |
Coarse aggregates | Medium diesel truck (8 t) | 20 km | 0.149 | Kg CO2/tkm |
Fly ash | Medium diesel truck (8 t) | 300 km | 0.149 | Kg CO2/tkm |
Sodium hydroxide | Light diesel truck (2 t) | 60 km | 0.212 | Kg CO2/tkm |
Sodium silicate | Light diesel truck (2 t) | 60 km | 0.212 | Kg CO2/tkm |
OPC | Medium diesel truck (8 t) | 300 km | 0.149 | Kg CO2/tkm |
Products | Mass | Economic Value Allocation Procedure (Allocation Coefficients) |
---|---|---|
Electricity (major product) | 1 kWh | 97% |
Fly ash (by-product) | 0.109 kg | 3% |
Run | CNaOH (mol/L) | SS/SH | S/F | CO2 Emission (kg/m3) | Compressive Strength (MPa) |
---|---|---|---|---|---|
1 | 8 | 2 | 0.4 | 260.05 | 39.2 |
2 | 10 | 2.5 | 0.4 | 271.75 | 52.6 |
3 | 12 | 3 | 0.4 | 280.2 | 58.0 |
4 | 14 | 4 | 0.4 | 289.27 | 59.1 |
5 | 8 | 2.5 | 0.44 | 283.95 | 43.6 |
6 | 10 | 2 | 0.44 | 280.65 | 64.2 |
7 | 12 | 4 | 0.44 | 304.83 | 48.6 |
8 | 14 | 3 | 0.44 | 300.63 | 71.0 |
9 | 8 | 3 | 0.48 | 311.71 | 37.2 |
10 | 10 | 4 | 0.48 | 324.78 | 40.8 |
11 | 12 | 2 | 0.48 | 305.19 | 73.5 |
12 | 14 | 2.5 | 0.48 | 317.88 | 76.2 |
13 | 8 | 4 | 0.52 | 341.31 | 24.2 |
14 | 10 | 3 | 0.52 | 335.34 | 38.7 |
15 | 12 | 2.5 | 0.52 | 332.18 | 59.2 |
16 | 14 | 2 | 0.52 | 329.83 | 63.2 |
Dependent Variable | Type III Square Sum | Df | Percentage Contribution (%) | F * | Sig | |
---|---|---|---|---|---|---|
Calibration model | CO2 emission | 9223.708 | 9 | — | 642.460 | 0.000 |
Compressive strength | 3217.106 | 9 | — | 17.003 | 0.001 | |
Intercept | CO2 emission | 1,482,032.325 | 1 | — | 929,053.735 | 0.000 |
Compressive strength | 45,081.906 | 1 | — | 2144.396 | 0.000 | |
SS/SH | CO2 emission | 953.381 | 3 | 10.33 | 199.218 | 2 × 10−6 |
Compressive strength | 692.062 | 3 | 20.70 | 10.973 | 0.008 | |
CNaOH | CO2 emission | 218.151 | 3 | 2.36 | 45.585 | 1.6 × 10−4 |
Compressive strength | 2223.612 | 3 | 66.51 | 35.257 | 0.000 | |
S/F | CO2 emission | 8052.176 | 3 | 87.21 | 1682.578 | 0.000 |
Compressive strength | 301.432 | 3 | 9.02 | 4.779 | 0.050 | |
Error | CO2 emission | 9.571 | 6 | 0.10 | — | — |
Compressive strength | 126.139 | 6 | 3.77 | — | — |
Dependent Variable | CNaOH | CNaOH | Sig1 | SS/SH | SS/SH | Sig2 | S/F | S/F | Sig3 |
---|---|---|---|---|---|---|---|---|---|
CO2 emission | 8.00 | 10.00 | 0.029 | 2.00 | 2.50 | 0.001 | 0.40 | 0.44 | 0.000 |
12.00 | 0.002 | 3.00 | 0.000 | 0.48 | |||||
14.00 | 0.000 | 4.00 | 0.000 | 0.52 | |||||
10.00 | 8.00 | 0.029 | 2.50 | 2.00 | 0.001 | 0.44 | 0.40 | 0.000 | |
12.00 | 0.196 | 3.00 | 0.005 | 0.48 | |||||
14.00 | 0.002 | 4.00 | 0.000 | 0.52 | |||||
12.00 | 8.00 | 0.002 | 3.00 | 2.00 | 0.000 | 0.48 | 0.40 | 0.000 | |
10.00 | 0.196 | 2.50 | 0.005 | 0.44 | |||||
14.00 | 0.032 | 4.00 | 0.001 | 0.52 | |||||
14.00 | 8.00 | 0.000 | 4.00 | 2.00 | 0.000 | 0.52 | 0.40 | 0.000 | |
10.00 | 0.002 | 2.50 | 0.000 | 0.44 | |||||
12.00 | 0.032 | 3.00 | 0.001 | 0.48 | |||||
Compressive strength | 8.00 | 10.00 | 0.042 | 2.00 | 2.50 | 1.000 | 0.40 | 0.44 | 1.000 |
12.00 | 0.002 | 3.00 | 0.209 | 0.48 | 1.000 | ||||
14.00 | 0.000 | 4.00 | 0.012 | 0.52 | 0.712 | ||||
10.00 | 8.00 | 0.042 | 2.50 | 2.00 | 1.000 | 0.44 | 0.40 | 1.000 | |
12.00 | 0.049 | 3.00 | 0.511 | 0.48 | 1.000 | ||||
14.00 | 0.008 | 4.00 | 0.024 | 0.52 | 0.105 | ||||
12.00 | 8.00 | 0.002 | 3.00 | 2.00 | 0.209 | 0.48 | 0.40 | 1.000 | |
10.00 | 0.049 | 2.50 | 0.511 | 0.44 | 1.000 | ||||
14.00 | 0.352 | 4.00 | 0.286 | 0.52 | 0.102 | ||||
14.00 | 8.00 | 0.000 | 4.00 | 2.00 | 0.012 | 0.52 | 0.40 | 0.712 | |
10.00 | 0.008 | 2.50 | 0.024 | 0.44 | 0.105 | ||||
12.00 | 0.352 | 3.00 | 0.286 | 0.48 | 0.102 |
N | Subset of CO2 Emission | Subset of Compressive Strength | ||
---|---|---|---|---|
CNaOH (mol/L) | 8.00 | 4 | 299.255 | 36.050 |
10.00 | 4 | 303.130 | 49.075 | |
12.00 | 4 | 305.600 | 59.825 | |
14.00 | 4 | 309.403 | 67.375 | |
SS/SH | 2.00 | 4 | 293.930 | 60.025 |
2.50 | 4 | 301.440 | 57.900 | |
3.00 | 4 | 306.970 | 51.225 | |
4.00 | 4 | 315.048 | 43.175 | |
S/F | 0.40 | 4 | 275.318 | 52.225 |
0.44 | 4 | 292.515 | 56.850 | |
0.48 | 4 | 314.890 | 56.925 | |
0.52 | 4 | 334.665 | 46.325 |
Optimum Mix | CNaOH | SS/SH | S/F |
---|---|---|---|
CO2 emission | 8 | 2 | 0.40 |
Compressive strength | 14 | 2 | 0.48 |
CO2 emission + Compressive strength | 12 | 2 | 0.40 |
Impact Factors | Gray Relational Degree of Compressive Strength (r1 (i)) | Gray Relational Degree of CO2 Emission (r2 (i)) |
---|---|---|
CNaOH | 0.632 | 0.559 |
SS/SH | 0.622 | 0.662 |
S/F | 0.616 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zhang, C.; Liang, Y.; Luo, J.; Wang, X.; Feng, Y.; Li, Y.; Wang, Q.; Abomohra, A.E.-F. Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete. Materials 2021, 14, 7375. https://doi.org/10.3390/ma14237375
Shi X, Zhang C, Liang Y, Luo J, Wang X, Feng Y, Li Y, Wang Q, Abomohra AE-F. Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete. Materials. 2021; 14(23):7375. https://doi.org/10.3390/ma14237375
Chicago/Turabian StyleShi, Xiaoshuang, Cong Zhang, Yongchen Liang, Jinqian Luo, Xiaoqi Wang, Ying Feng, Yanlin Li, Qingyuan Wang, and Abd El-Fatah Abomohra. 2021. "Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete" Materials 14, no. 23: 7375. https://doi.org/10.3390/ma14237375
APA StyleShi, X., Zhang, C., Liang, Y., Luo, J., Wang, X., Feng, Y., Li, Y., Wang, Q., & Abomohra, A. E. -F. (2021). Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete. Materials, 14(23), 7375. https://doi.org/10.3390/ma14237375