Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Black TiO2 NPs
2.2. Synthesis of Mn-Modified Black TiO2 NPs
2.3. Materials Characterization
2.4. Photocatalytic Activity Evaluation
2.5. Kinetics and Electrical Energy Consumption
3. Results and Discussion
3.1. Properties of the Synthesized Materials
3.2. Photocatalytic Performance
3.3. Photocatalytic Degradation Mechanism
3.4. Electrical Energy Consumption
3.5. Recyclability and Stability Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kietkwanboot, A.; Chaiprapat, S.; Müller, R.; Suttinun, O. Biodegradation of phenolic compounds present in palm oil mill effluent as single and mixed substrates by Trametes hirsuta AK04. J. Environ. Sci. Health Part A 2020, 55, 989–1002. [Google Scholar] [CrossRef]
- Tosu, P.; Luepromchai, E.; Suttinun, O. Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent. Environ. Eng. Res. 2015, 20, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Chantho, P.; Musikavong, C.; Suttinun, O. Removal of phenolic compounds from palm oil mill effluent by thermophilic Bacillus thermoleovorans strain A2 and their effect on anaerobic digestion. Int. Biodeterior. Biodegrad. 2016, 115, 293–301. [Google Scholar] [CrossRef]
- Xiong, W.; Ni, P.; Chen, Y.; Gao, Y.; Li, S.; Zhan, A. Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton. Environ. Pollut. 2019, 252, 1483–1490. [Google Scholar] [CrossRef]
- Alhaji, M.H.; Sanaullah, K.; Salleh, S.F.; Baini, R.; Lim, S.F.; Rigit, A.R.H.; Said, K.A.M.; Khan, A. Photo-oxidation of pre-treated palm oil mill Effluent using cylindrical column immobilized photoreactor. Process Saf. Environ. Prot. 2018, 117, 180–189. [Google Scholar] [CrossRef]
- Alhaji, M.H.; Sanaullah, K.; Lim, S.-F.; Khan, A.; Hipolito, C.N.; Abdullah, M.O.; Bhawani, S.A.; Jamil, T. Photocatalytic treatment technology for palm oil mill effluent (POME)—A review. Process Saf. Environ. Prot. 2016, 102, 673–686. [Google Scholar] [CrossRef]
- Aris, A.; Jusoh, M.N.H.; Wahab, N.S.A.A. Applications of advanced oxidation processes in palm oil mill effluent treatment. In Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment; IGI Global: Hershey, PA, USA, 2019; pp. 123–149. [Google Scholar]
- Ng, K.H. Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere 2021, 270, 129378. [Google Scholar] [CrossRef] [PubMed]
- Charles, A.; Cheng, C.K. Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: Effects of catalyst preparation technique. J. Environ. Manag. 2019, 234, 404–411. [Google Scholar] [CrossRef]
- Charles, A.; Khan, M.R.; Ng, K.H.; Wu, T.Y.; Lim, J.W.; Wongsakulphasatch, S.; Witoon, T.; Cheng, C.K. Facile synthesis of CaFe2O4 for visible light driven treatment of polluting palm oil mill effluent: Photokinetic and scavenging study. Sci. Total Environ. 2019, 661, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Sidik, D.A.B.; Hairom, N.H.H.; Ahmad, M.K.; Madon, R.H.; Mohammad, A.W. Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Saf. Environ. Prot. 2020, 143, 273–284. [Google Scholar] [CrossRef]
- Ng, K.H.; Gan, Y.S.; Cheng, C.K.; Liu, K.-H.; Liong, S.-T. Integration of machine learning-based prediction for enhanced Model’s generalization: Application in photocatalytic polishing of palm oil mill effluent (POME). Environ. Pollut. 2020, 267, 115500. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.H.; Yuan, L.S.; Cheng, C.K.; Chen, K.; Fang, C. TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. J. Clean. Prod. 2019, 233, 209–225. [Google Scholar] [CrossRef]
- Nawaz, R.; Kait, C.F.; Chia, H.Y.; Isa, M.H.; Huei, L.W.; Sahrin, N.T.; Khan, N. Countering major challenges confronting photocatalytic technology for the remediation of treated palm oil mill effluent: A review. Environ. Technol. Innov. 2021, 23, 101764. [Google Scholar] [CrossRef]
- Ng, K.H.; Khan, M.R.; Ng, Y.H.; Hossain, S.S.; Cheng, C.K. Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO Photocatalytic systems: A comparative study. J. Environ. Manag. 2017, 196, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, R.; Chong, F.K.; Ho, Y.C.; Isa, M.H.; Lim, W.H. Restoration of pretreated palm oil mill effluent using TiO2 based photocatalytic system: An optimization study. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 042035. [Google Scholar] [CrossRef]
- Rahman, S.; Nawaz, R.; Khan, J.A.; Ullah, H.; Irfan, M.; Glowacz, A.; Lyp-Wronska, K.; Wzorek, L.; Asif Khan, M.K.; Jalalah, M.; et al. Synthesis and characterization of carbon and carbon-nitrogen doped black TiO2 nanomaterials and their application in sonophotocatalytic remediation of treated agro-industrial wastewater. Materials 2021, 14, 6175. [Google Scholar] [CrossRef] [PubMed]
- Ali-Löytty, H.; Hannula, M.; Saari, J.; Palmolahti, L.; Bhuskute, B.D.; Ulkuniemi, R.; Nyyssönen, T.; Lahtonen, K.; Valden, M. Diversity of TiO2: Controlling the molecular and electronic structure of atomic-layer-deposited black TiO2. ACS Appl. Mater. Interfaces 2019, 11, 2758–2762. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhu, G.; Wang, X.; Yuan, X.; Lin, T.; Huang, F. Progress in black titania: A new material for advanced photocatalysis. Adv. Energy Mater. 2016, 6, 1600452. [Google Scholar] [CrossRef]
- Wang, H.; Lin, T.; Zhu, G.; Yin, H.; Lü, X.; Li, Y.; Huang, F. Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catal. Commun. 2015, 60, 55–59. [Google Scholar] [CrossRef]
- Fang, W.; Xing, M.; Zhang, J. A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B Environ. 2014, 160, 240–246. [Google Scholar] [CrossRef]
- Shah, M.W.; Zhu, Y.; Fan, X.; Zhao, J.; Li, Y.; Asim, S.; Wang, C. Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.; Pal, B. Solar light driven photocatalytic oxidative degradation of methyl viologen using Mn2+/Mn7+-TiO2 nanocomposites. J. Photochem. Photobiol. A Chem. 2020, 393, 112430. [Google Scholar] [CrossRef]
- Michalas, L.; Khiat, A.; Stathopoulos, S.; Prodromakis, T. Electrical characteristics of interfacial barriers at metal—TiO2 contacts. J. Phys. D Appl. Phys. 2018, 51, 425101. [Google Scholar] [CrossRef]
- Polliotto, V.; Livraghi, S.; Krukowska, A.; Dozzi, M.V.; Zaleska-Medynska, A.; Selli, E.; Giamello, E. Copper-modified TiO2 and ZrTiO4: Cu oxidation state evolution during photocatalytic hydrogen production. ACS Appl. Mater. 2018, 10, 27745–27756. [Google Scholar] [CrossRef]
- Bharati, B.; Mishra, N.; Sinha, A.; Rath, C. Unusual structural transformation and photocatalytic activity of Mn doped TiO2 nanoparticles under sunlight. Mater. Res. Bull. 2020, 123, 110710. [Google Scholar] [CrossRef]
- Stucchi, M.; Elfiad, A.; Rigamonti, M.; Khan, H.; Boffito, D.C. Water treatment: Mn-TiO2 synthesized by ultrasound with increased aromatics adsorption. Ultrason. Sonochem. 2018, 44, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sharotri, N.; Sharma, D.; Sud, D. Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. J. Mater. Res. Technol. 2019, 8, 3995–4009. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review on the synthesis of TiO2 nanoparticles by solution route. Cent. Eur. J. Chem. 2012, 10, 279–294. [Google Scholar] [CrossRef]
- Yoong, L.; Chong, F.K.; Dutta, B.K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 2009, 34, 1652–1661. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Oladipo, A.A. Rapid photocatalytic treatment of high-strength olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe–LDO. J. Water Process Eng. 2021, 40, 101932. [Google Scholar] [CrossRef]
- Guo, M.; Gao, Y.; Shao, G. Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders. Phys. Chem. Chem. Phys. 2016, 18, 2818–2829. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Ji, J.; Xu, Y.; Deng, J.; Huang, H.; He, M.; Leung, D.Y.; Wu, M.; Liu, S.; Liu, S. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Appl. Catal. B Environ. 2018, 220, 78–87. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Chen, Y. Structure and photocatalytic properties of Mn-doped TiO2 loaded on wood-based activated carbon fiber composites. Mater. Chem. 2017, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Tbessi, I.; Benito, M.; Molins, E.; LIorca, J.; Touati, A.; Sayadi, S.; Najjar, W. Effect of Ce and Mn co-doping on photocatalytic performance of sol-gel TiO2. Solid State Sci. 2019, 88, 20–28. [Google Scholar] [CrossRef]
- Binas, V.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B Environ. 2012, 113, 79–86. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. B 2002, 98, 13669–13679. [Google Scholar] [CrossRef]
- Lu, L.; Xia, X.; Luo, J.; Shao, G. Mn-doped TiO2 thin films with significantly improved optical and electrical properties. J. Phys. D Appl. Phys. 2012, 45, 485102. [Google Scholar] [CrossRef]
- Momeni, M.M.; Hakimian, M.; Kazempour, A. In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst. Ceram. Int. 2015, 41, 13692–13701. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping. J. Lumin. 2013, 136, 339–346. [Google Scholar] [CrossRef]
- Ji, M.; Choa, Y.-H.; Lee, Y.-I. One-step synthesis of black TiO2−x microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities. Ultrason. Sonochem. 2021, 74, 105557. [Google Scholar] [CrossRef]
- Qiu, J.; Zeng, G.; Ge, M.; Arab, S.; Mecklenburg, M.; Hou, B.; Shen, C.; Benderskii, A.V.; Cronin, S.B. Correlation of Ti3+ states with photocatalytic enhancement in TiO2-passivated p-GaAs. J. Catal. 2016, 337, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, T.; Li, X.; Lu, S.; Zhang, F.; Wang, Y.; Zhao, H.; Liu, Q.; Luo, Y.; Asiri, A.M. Modulating oxygen vacancies of TiO2 nanospheres by Mn-doping to boost electrocatalytic N2 reduction. ACS Sustain. Chem. Eng. 2021, 9, 1512–1517. [Google Scholar] [CrossRef]
- Huang, Y.; Li, K.; Lin, Y.; Tong, Y.; Liu, H. Enhanced efficiency of electron–hole separation in Bi2O2CO3 for photocatalysis via acid treatment. ChemCatChem 2018, 10, 1982–1987. [Google Scholar] [CrossRef]
- Xia, X.; Lu, L.; Walton, A.; Ward, M.; Han, X.; Brydson, R.; Luo, J.; Shao, G. Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Mater. 2012, 60, 1974–1985. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Huang, Y.; Jia, Y.; Chen, L.; Pan, Y.; Wang, M. Adsorptive-photocatalytic performance and mechanism of Me (Mn,Fe)-N co-doped TiO2/SiO2 in cyanide wastewater. J. Alloys Compd. 2021, 867, 159020. [Google Scholar] [CrossRef]
- Sun, M.; Fang, L.-M.; Hong, X.-H.; Zhang, F.; Zhai, L.-F. Catalytic behaviors of manganese oxides in electro-assisted catalytic air oxidation reaction: Influence of structural properties. Appl. Surf. Sci. 2020, 511, 145536. [Google Scholar] [CrossRef]
- Xie, G.; Liu, X.; Li, Q.; Lin, H.; Li, Y.; Nie, M.; Qin, L. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. J. Mater. Sci. 2017, 52, 10915–10926. [Google Scholar] [CrossRef]
- Deng, Q.; Xia, X.; Guo, M.; Gao, Y.; Shao, G. Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity. Mater. Lett. 2011, 65, 2051–2054. [Google Scholar] [CrossRef]
- Lee, C.-H.; Nam, B.-A.; Choi, W.-K.; Lee, J.-K.; Choi, D.-J.; Oh, Y.-J. Mn: SnO2 ceramics as p-type oxide semiconductor. Mater. Lett. 2011, 65, 722–725. [Google Scholar] [CrossRef]
- Gac, W.; Greluk, M.; Słowik, G.; Turczyniak-Surdacka, S. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction. Appl. Surf. Sci. 2018, 440, 1047–1062. [Google Scholar] [CrossRef]
- Shao, G.; Deng, Q.; Wan, L.; Guo, M.; Xia, X.; Gao, Y. Molecular design of TiO2 for gigantic red shift via sublattice substitution. J. Nanosci. Nanotechnol. 2010, 10, 7092–7096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, M.; Abou Chaaya, A.; Abboud, N.; Bechelany, M.; Viter, R.; Eid, C.; Khoury, A.; Miele, P. Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers. Superlattices Microstruct. 2015, 77, 18–24. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Shi, J.; Jia, G.; Shen, S.; Zhou, J.; Li, C. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 2010, 12, 7083–7090. [Google Scholar] [CrossRef] [PubMed]
- Mercado, C.C.; Knorr, F.J.; McHale, J.L.; Usmani, S.M.; Ichimura, A.S.; Saraf, L.V. Location of hole and electron traps on nanocrystalline anatase TiO2. J. Phys. Chem. C 2012, 116, 10796–10804. [Google Scholar] [CrossRef]
- Sang, N.X.; Huong, P.T.L.; Thy, T.T.M.; Dat, P.T.; Minh, V.C.; Tho, N.H. Crystalline deformation and photoluminescence of titanium dioxide nanotubes during in situ hybridization with graphene: An example of the heterogeneous photocatalyst. Superlattices Microstruct. 2018, 121, 9–15. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Dutta, N.K. Recombination mechanisms in semiconductors. In Semiconductor Lasers; Springer: Berlin/Heidelberg, Germany, 1993; pp. 74–146. [Google Scholar]
- Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J. Phys. Chem. 1990, 94, 829–832. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.; Lin, Y.; Yang, S.; Zhang, Q.; Peng, F. Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 383, 123133. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Fan, C.; Liang, Z.; Han, P. First-principles investigation of impurity concentration influence on bonding behavior, electronic structure and visible light absorption for Mn-doped BiOCl photocatalyst. Phys. B Condens. Matter 2012, 407, 4416–4424. [Google Scholar] [CrossRef]
- Tab, A.; Dahmane, M.; Belabed, C.; Bellal, B.; Richard, C.; Trari, M. High efficiency photocatalytic degradation of Ambroxol over Mn doped TiO2: Experimental designs, identification of transformation products, mineralization and mechanism. Sci. Total Environ. 2021, 780, 146451. [Google Scholar] [CrossRef] [PubMed]
- Sobczyński, A.; Duczmal, Ł.; Zmudziński, W. Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. J. Mol. Catal. A Chem. 2004, 213, 225–230. [Google Scholar] [CrossRef]
- Jay, L.; Chirwa, E. Pathway analysis of phenol degradation by UV/TiO2 photocatalysis utilising the C-13 isotopic labelling technique. Chem. Eng. Trans. 2018, 70, 181–186. [Google Scholar]
- Ilie, A.G.; Scarisoareanu, M.; Morjan, I.; Dutu, E.; Badiceanu, M.; Mihailescu, I. Principal component analysis of Raman spectra for TiO2 nanoparticle characterization. Appl. Surf. Sci. 2017, 417, 93–103. [Google Scholar] [CrossRef]
- Negi, C.; Kandwal, P.; Rawat, J.; Sharma, M.; Sharma, H.; Dalapati, G.; Dwivedi, C. Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Appl. Surf. Sci. 2021, 554, 149553. [Google Scholar] [CrossRef]
- Rab, N.; Chong, F.K.; Mohamed, H.I.; Lim, W.H. Preparation of TiO2 nanoparticles by hydrolysis of TiCl4 using water and glycerol solvent system. J. Phys. Conf. Ser. 2018, 1123, 012065. [Google Scholar] [CrossRef] [Green Version]
Properties | B-TiO2 | Mn-B-TiO2 (0.1%) | Mn-B-TiO2 (0.3%) | Mn-B-TiO2 (0.5%) |
---|---|---|---|---|
FWHM | 0.5872 | 0.5628 | 0.5117 | 0.4093 |
d-spacing (Å) | 3.498 | 3.507 | 3.504 | 3.550 |
Crystallite size (nm) | 49.31 | 47.63 | 47.89 | 48.41 |
Crystallinity (%) | 60.82 | 46.00 | 47.49 | 45.79 |
Absorption edge (nm) | 550 | >600 | >600 | >600 |
Bandgap | 2.96 | 2.49 | 2.30 | 2.21 |
Specific surface area (m2/g) | 99.88 | 97.35 | 94.03 | 74.60 |
Pore volume (m3/g) | 0.198 | 0.216 | 0.210 | 0.231 |
Pore size (nm) | 3.06 | 5.01 | 5.03 | 5.08 |
Fitting Parameters | Binding Energy (eV) | |
---|---|---|
B-TiO2 | Mn-B-TiO2 NPs | |
Ti2p3/2 (Ti4+) | 459.04 | 460.04 |
Ti2p1/2 (Ti3+) | 460.46 | 458.70 |
Ti2p3/2 (Ti4+) | 465.05 | 465.58 |
Ti2p1/2 (Ti3+) | — | — |
1 OL | 529.94 | 530.31 |
2 OV | 531.37 | 531.56 |
C–C | 284.71 | 285.08 |
C–O | — | 285.88 |
Coke-C | 288.78 | 289.24 |
Mn3+ | — | 642.65 |
Mn4+ | — | 643.98 |
Mn6+ | — | 645.41 |
Mn7+ | — | 646.28 |
Photocatalyst | Phenol Removal (%) | Kapp (min−1) | Electrical Energy (kWh/m3) | Cost USD/m3 |
---|---|---|---|---|
B-TiO2 | 48.17 | 0.2865 | 104.71 | 5.54963 |
Mn-B-TiO2 (0.1%) | 52.37 | 0.3221 | 93.14 | 4.93642 |
Mn-B-TiO2 (0.3%) | 60.12 | 0.3992 | 75.15 | 3.98295 |
Mn-B-TiO2 (0.5%) | 23.97 | 0.1190 | 252.11 | 13.36183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.; Nawaz, R.; Khan, J.A.; Ullah, H.; Haneef, T.; Legutko, S.; Rahman, S.; Józwik, J.; Alsaiari, M.A.; Khan, M.K.A.; et al. Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater. Materials 2021, 14, 7422. https://doi.org/10.3390/ma14237422
Irfan M, Nawaz R, Khan JA, Ullah H, Haneef T, Legutko S, Rahman S, Józwik J, Alsaiari MA, Khan MKA, et al. Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater. Materials. 2021; 14(23):7422. https://doi.org/10.3390/ma14237422
Chicago/Turabian StyleIrfan, Muhammad, Rab Nawaz, Javed Akbar Khan, Habib Ullah, Tahir Haneef, Stanislaw Legutko, Saifur Rahman, Jerzy Józwik, Mabkhoot A. Alsaiari, Mohammad Kamal Asif Khan, and et al. 2021. "Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater" Materials 14, no. 23: 7422. https://doi.org/10.3390/ma14237422
APA StyleIrfan, M., Nawaz, R., Khan, J. A., Ullah, H., Haneef, T., Legutko, S., Rahman, S., Józwik, J., Alsaiari, M. A., Khan, M. K. A., Mursal, S. N. F., AlKahtani, F. S., Alshorman, O., & Ghanim, A. A. J. (2021). Synthesis and Characterization of Manganese-Modified Black TiO2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater. Materials, 14(23), 7422. https://doi.org/10.3390/ma14237422