Anodizing of Hydrogenated Titanium and Zirconium Films
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- 1% wt. solutions of boric (BA) and tartaric acid (TA) in combined mode;
- (2)
- 0.6 M solution of TA in galvanostatic mode;
- (3)
- 0.6 M solution of oxalic acid (OA) and TA in potentiodynamic mode.
3. Results and Discussion
3.1. Anodizing in Boric Acid
3.2. Anodizing in Oxalic Acid
3.3. Anodizing in Tartaric Acid
- (1)
- The change in the conductivity of the film formed during anodizing of Ti:H.
- (2)
- The emergence of the current due to the oxidation of atomic hydrogen, distributed in the volume of the metal.
- (3)
- The occurrence of a larger number of side reactions catalyzed by titanium dioxide, formed from hydrogenated samples.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pligovka, A.; Poznyak, A.; Norek, M. Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. Micromachines 2021, 12, 589. [Google Scholar] [CrossRef]
- Pligovka, A.N.; Luferov, A.N.; Nosik, R.F.; Mozalev, A.M. Dielectric characteristics of thin film capacitors based on anodized Al/Ta layers. In Proceedings of the KryMiKo 2010 CriMiCo: 2010 20th International Crimean Conference: Microwave & Telecommunication Technology, Sevastopol, Crimea, Ukraine, 13–17 September 2010; pp. 880–881. [Google Scholar] [CrossRef]
- Sadykov, A.I.; Kushnir, S.E.; Sapoletova, N.A.; Ivanov, V.K.; Napolskii, K.S. Anodic titania photonic crystals with high reflectance within photonic band gap via pore shape engineering. Scr. Mater. 2020, 178, 13–17. [Google Scholar] [CrossRef]
- Golosov, D.A.; Vilya, N.; Zavadski, S.M.; Melnikov, S.N.; Avramchuk, A.V.; Grekhov, M.M.; Kargin, N.I.; Komissarov, I.V. Influence of film thickness on the dielectric characteristics of hafnium oxide layers. Thin Solid Films 2019, 690, 137517. [Google Scholar] [CrossRef]
- Mozalev, A.; Pytlicek, Z.; Kamnev, K.; Prasek, J.; Gispert-Guirado, F.; Llobet, E. Zirconium oxide nanoarrays via the self-organized anodizing of Al/Zr bilayers on substrates. Mater. Chem. Front. 2021, 5, 1917–1931. [Google Scholar] [CrossRef]
- Bendova, M.; Gispert-Guirado, F.; Hassel, A.W.; Llobet, E.; Mozalev, A. Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges. Nano Energy 2017, 33, 72–87. [Google Scholar] [CrossRef]
- Young, L. Anodic Oxide Films; Academic Press Ltd.: Cambridge, MA, USA, 1961. [Google Scholar]
- Dell’oca, C.J.; Pulfrey, D.L.; Young, L. Anodic Oxide Films. Phys. Thin Film. 1971, 6, 1–79. [Google Scholar] [CrossRef]
- Surganov, V.F.; Mozalev, A.M.; Poznyak, A.A. Tantalum dissolution during electrochemical anodizing in oxalate electrolyte. Zhurnal Prikl. Khimii Russ. J. Appl. Chem. 1995, 68, 1466–1469. [Google Scholar]
- Kleschenko, I.; Rezvanova, M.; Poznyak, A. Peculiarity of Aluminium Anodization in Sulphosalicylic Acid Solutions. In Proceedings of the 2006 16th International Crimean Microwave and Telecommunication Technology, Sevastopol, Ukraine, 11–15 September 2006; pp. 675–676. [Google Scholar] [CrossRef]
- Yakovleva, N.M.; Yakovlev, A.N.; Gafiyatullin, M.M.; Denisov, A.I. Computer diagnostics of the mesoscopic structure of nanoporous aluminas. Inorg. Mater. 2010, 46, 1529–1535. [Google Scholar] [CrossRef]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Stepanova, K.V.; Shulga, A.M.; Yakovleva, N.M.; Kokatev, A.N. Crystalline microcone coatings on titanium sponge. Trans. Kola Sci. Cent. 2020, 11, 185–189. [Google Scholar] [CrossRef]
- Kushnir, S.E.; Komarova, T.Y.; Napolskii, K.S. High-quality-factor anodic alumina optical microcavities prepared by cyclic anodizing with voltage versus optical path length modulation. J. Mater. Chem. C 2020, 8, 3991–3995. [Google Scholar] [CrossRef]
- Zajączkowska, L.; Norek, M. Peculiarities of Aluminum Anodization in AHAs-Based Electrolytes: Case Study of the Anodization in Glycolic Acid Solution. Materials 2021, 14, 5362. [Google Scholar] [CrossRef]
- Kamnev, K.; Sepúlveda, M.; Bendova, M.; Pytlicek, Z.; Prasek, J.; Kolibalova, E.; Michalicka, J.; Mozalev, A. The Growth, Composition, and Functional Properties of Self-Organized Nanostructured ZrO2-Al2O3 Anodic Films for Advanced Dielectric Applications. Adv. Electron. Mater. 2021, 7, 2100505. [Google Scholar] [CrossRef]
- Stern, M.; Wissenberg, H. The Electrochemical Behavior and Passivity of Titanium. J. Electrochem. Soc. 1959, 106, 755. [Google Scholar] [CrossRef]
- Thomas, N.T.; Nobe, K. The Electrochemical Behavior of Titanium: Effect of pH and Chloride Ions. J. Electrochem. Soc. 1969, 116, 1748. [Google Scholar] [CrossRef]
- Kelly, E.J. Anodic Dissolution and Passivation of Titanium in Acidic Media: III. Chloride Solutions. J. Electrochem. Soc. 1979, 126, 2064–2075. [Google Scholar] [CrossRef]
- Kelly, E.J. Electrochemical Behavior of Titanium. In Modern Aspects of Electrochemistry; Springer: Boston, MA, USA, 1982; pp. 319–424. [Google Scholar]
- Li, Y.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically Aligned Ta3N5 Nanorod Arrays for Solar-Driven Photoelectrochemical. Water Splitting. Adv. Mater. 2013, 25, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Baraban, A.P.; Dobrotvorskii, M.A.; Elets, D.I.; Gabis, I.E.; Kuznetsov, V.G.; Piven, V.A.; Voyt, A.P.; Selivanov, A.A. Synthesis and properties of hydrogenated aluminum thin film by reactive sputtering. Thin Solid Films 2020, 709, 138217. [Google Scholar] [CrossRef]
- Ying, J.; Li, X.; Greenberg, E.; Prakapenka, V.B.; Liu, H.; Struzhkin, V.V. Synthesis and stability of tantalum hydride at high pressures. Phys. Rev. B 2019, 99, 224504. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Higher hydrides of vanadium and niobium. Inorg. Chem. 1970, 9, 1678–1682. [Google Scholar] [CrossRef]
- Setoyama, D.; Matsunaga, J.; Muta, H.; Uno, M.; Yamanaka, S. Mechanical properties of titanium hydride. J. Alloys Compd. 2004, 381, 215–220. [Google Scholar] [CrossRef]
- Mintz, M.H. Hafnium-Hydrogen. Solid State Phenom. 1996, 49–50, 331–356. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.-T.; He, C.-H.; Zhang, P. First-principles study of ground state properties of ZrH2. Comput. Mater. Sci. 2011, 50, 3297–3302. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, S.; Sun, Y.; Zhang, J.; Lin, J.; Yang, G.; Bergara, A. Structural and Superconducting Properties of Tungsten Hydrides Under High Pressure. Front. Phys. 2018, 6, 101. [Google Scholar] [CrossRef]
- Mueller, W.M.; Blackledge, J.P.; Libowitz, G.G. Metal Hydrides; Academic Press: New York, NY, USA, 1968; ISBN 9781483232157. [Google Scholar]
- Sidhu, S.S.; Heaton, L.; Zauberis, D.D. Neutron diffraction studies of hafnium–hydrogen and titanium–hydrogen systems. Acta Crystallogr. 1956, 9, 607–614. [Google Scholar] [CrossRef]
- Yakel, H.L. Thermocrystallography of higher hydrides of titanium and zirconium. Acta Crystallogr. 1958, 11, 46–51. [Google Scholar] [CrossRef]
- Chen, C.L.; Zhou, D.S.; Mitchell, T.E.; Ye, H.Q. Direct observation of β-TaH phase precipitation in tantalum–hydrogen solid solution. J. Vac. Sci. Technol. A Vacuum Surfaces Film 1996, 14, 2551–2553. [Google Scholar] [CrossRef]
- Goltsov, V. Fundamentals of hydrogen treatment of materials and its classification. Int. J. Hydrog. Energy 1997, 22, 119–124. [Google Scholar] [CrossRef]
- Maeland, A.J.; Hauback, B.; Fjellvåg, H.; Sørby, M. The structures of hydride phases in the Ti3Al/H system. Int. J. Hydrog. Energy 1999, 24, 163–168. [Google Scholar] [CrossRef]
- Wipf, H.; Kappesser, B.; Werner, R. Hydrogen diffusion in titanium and zirconium hydrides. J. Alloys Compd. 2000, 310, 190–195. [Google Scholar] [CrossRef]
- Termsuksawad, P.; Niyomsoan, S.; Goldfarb, R.B.; Kaydanov, V.I.; Olson, D.L.; Mishra, B.; Gavra, Z. Measurement of hydrogen in alloys by magnetic and electronic techniques. J. Alloys Compd. 2004, 373, 86–95. [Google Scholar] [CrossRef]
- Michel, K.J.; Ozoliņš, V. Recent advances in the theory of hydrogen storage in complex metal hydrides. MRS Bull. 2013, 38, 462–472. [Google Scholar] [CrossRef]
- Lloyd, A.L.; Smith, R.; Wootton, M.J.; Andrews, J.; Arul, J.; Muruva, H.P.; Vinod, G. Modelling the effect of hydrogen on crack growth in zirconium. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 455, 13–20. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Ma, H.; Lu, C.; Luo, H.; Wang, X.; Huang, X.; Lan, Z.; Guo, J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J. Energy Chem. 2021, 52, 428–440. [Google Scholar] [CrossRef]
- Su, W.; Zhao, F.; Ma, L.; Tang, R.; Dong, Y.; Kong, G.; Zhang, Y.; Niu, S.; Tang, G.; Wang, Y.; et al. Synthesis and Stability of Hydrogen Storage Material Aluminum Hydride. Materials 2021, 14, 2898. [Google Scholar] [CrossRef]
- Sun, T.; Peinecke, K.; Urbanczyk, R.; Felderhoff, M. Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminum Hexahydride. Hydrogen 2021, 2, 147–159. [Google Scholar] [CrossRef]
- Yildirim, T.; Ciraci, S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Phys. Rev. Lett. 2005, 94, 175501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, B.; Ray, P.; Garg, N.; Banerjee, S. High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: Density Functional Theory investigations. Int. J. Hydrog. Energy 2021, 46, 4154–4167. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L. Hydrogen solution in tetrahedral or octahedral interstitial sites in zirconium-cobalt hydrogen storage alloy: A first-principles study. J. Alloys Compd. 2021, 859, 157881. [Google Scholar] [CrossRef]
- Bambalaza, S.E.; Langmi, H.W.; Mokaya, R.; Musyoka, N.M.; Khotseng, L.E. Co-pelletization of a zirconium-based metal-organic framework (UiO-66) with polymer nanofibers for improved useable capacity in hydrogen storage. Int. J. Hydrog. Energy 2021, 46, 8607–8620. [Google Scholar] [CrossRef]
- Vaidyanathan, A.; Wagh, V.; Rout, C.S.; Chakraborty, B. High capacity reversible hydrogen storage in zirconium doped 2D-covalent triazine frameworks: Density Functional Theory investigations. Int. J. Hydrog. Energy 2021, 46, 14520–14531. [Google Scholar] [CrossRef]
- Schur, D.V.; Zaginaichenko, S.Y.; Matysina, Z.A.; Smityukh, I.; Pishuk, V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Compd. 2002, 330–332, 70–75. [Google Scholar] [CrossRef]
- Shevick, S.L.; Wilson, C.V.; Kotesova, S.; Kim, D.; Holland, P.L.; Shenvi, R.A. Catalytic hydrogen atom transfer to alkenes: A roadmap for metal hydrides and radicals. Chem. Sci. 2020, 11, 12401–12422. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Leshuk, T.; Parviz, R.; Everett, P.; Krishnakumar, H.; Varin, R.A.; Gu, F. Photocatalytic Activity of Hydrogenated TiO2. ACS Appl. Mater. Interfaces 2013, 5, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, E.M.; Abd Hamid, S.B.; Juan, J.C.; Basirun, W.J.; Centi, G. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci. 2016, 370, 380–393. [Google Scholar] [CrossRef]
- Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 2012, 12, 1690–1696. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, C.; Oyler, N.A.; Chen, X. Hydrogenated TiO2 Nanocrystals: A Novel Microwave Absorbing Material. Adv. Mater. 2013, 25, 6905–6910. [Google Scholar] [CrossRef]
- Chalamala, B.R.; Reuss, R.H. Development of thin-film metal hydrides for integration into field emission displays. Appl. Phys. Lett. 2001, 78, 2967–2969. [Google Scholar] [CrossRef]
- Kolachev, B.A. Hydrogen Embrittlement of Nonferrous Metals; Israel Program for Scientific Translations: Jerusalem, Palestine, 1968; p. 216. [Google Scholar]
- Louthan, M.; Caskey, G.; Donovan, J.; Rawl, D. Hydrogen embrittlement of metals. Mater. Sci. Eng. 1972, 10, 357–368. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Macak, J.M.; Sieber, I.; Schmuki, P. Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization. Small 2005, 1, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Fohlerova, Z.; Kamnev, K.; Sepúlveda, M.; Pytlicek, Z.; Prasek, J.; Mozalev, A. Nanostructured Zirconium-Oxide Bioceramic Coatings Derived from the Anodized Al/Zr Metal Layers. Adv. Mater. Interfaces 2021, 8, 2100256. [Google Scholar] [CrossRef]
- Thomas, N.T.; Nobe, K. Kinetics of the Hydrogen Evolution Reaction on Titanium. J. Electrochem. Soc. 1970, 117, 622. [Google Scholar] [CrossRef]
- Phillips, I.I.; Poole, P.; Shreir, L. Hydride formation during cathodic polarization of Ti—I. Effect of current density on kinetics of growth and composition of hydride. Corros. Sci. 1972, 12, 855–866. [Google Scholar] [CrossRef]
- Phillips, I.I.; Poole, P.; Shreir, L. Hydride formation during cathodic polarization of Ti—II. Effect of temperature and pH of solution on hydride growth. Corros. Sci. 1974, 14, 533–542. [Google Scholar] [CrossRef]
- Murai, T.; Ishikawa, M.; Miura, C. The Absorption of Hydrogen into Titanium under Cathodic Polarization. Corros. Eng. 1977, 26, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Millenbach, P.; Givon, M. The electrochemical formation of titanium hydride. J. Less Common Met. 1982, 87, 179–184. [Google Scholar] [CrossRef]
- Kelly, E.J.; Bronstein, H.R. Kinetics and Mechanism of the Hydrogen Evolution Reaction on Titanium in Acidic Media. J. Electrochem. Soc. 1984, 131, 2232–2238. [Google Scholar] [CrossRef]
- Torresi, R.M.; Cámara, O.R.; De Pauli, C.P. Influence of the hydrogen evolution reaction on the anodic titanium oxide film properties. Electrochim. Acta 1987, 32, 1357–1363. [Google Scholar] [CrossRef]
- Shih, D.S.; Robertson, I.M.; Birnbaum, H.K. Hydrogen embrittlement of α titanium: In situ TEM studies. Acta Metall. 1988, 36, 111–124. [Google Scholar] [CrossRef]
- Takasaki, A.; Furuya, Y.; Ojima, K.; Taneda, Y. Hydride dissociation and hydrogen evolution behavior of electrochemically charged pure titanium. J. Alloys Compd. 1995, 224, 269–273. [Google Scholar] [CrossRef]
- Jerkiewicz, G.; Zolfaghari, A. Comparison of Hydrogen Electroadsorption from the Electrolyte with Hydrogen Adsorption from the Gas Phase. J. Electrochem. Soc. 1996, 143, 1240–1248. [Google Scholar] [CrossRef]
- Wang, Z.F.; Briant, C.L.; Kumar, K.S. Hydrogen Embrittlement of Grade 2 and Grade 3 Titanium in 6% Sodium Chloride Solution. Corrosion 1998, 54, 553–560. [Google Scholar] [CrossRef]
- Azumi, K.; Asada, Y.; Ueno, T.; Seo, M.; Mizuno, T. Monitoring of Hydrogen Absorption into Titanium Using Resistometry. J. Electrochem. Soc. 2002, 149, B422. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Ramamurthy, S.; Noël, J.J.; Shoesmith, D.W. Hydrogen absorption into alpha titanium in acidic solutions. Electrochim. Acta 2006, 52, 1169–1181. [Google Scholar] [CrossRef]
- Lunarska, E.; Chernyaeva, O.; Lisovytskii, D. Hydride formation under cathodic charging of titanium and TiAl-based alloys in alkaline solutions. Mater. Sci. 2008, 44, 423–428. [Google Scholar] [CrossRef]
- Videm, K.; Lamolle, S.; Monjo, M.; Ellingsen, J.E.; Lyngstadaas, S.P.; Haugen, H.J. Hydride formation on titanium surfaces by cathodic polarization. Appl. Surf. Sci. 2008, 255, 3011–3015. [Google Scholar] [CrossRef]
- Zeng, Y.; Noël, J.J.; Norton, P.R.; Shoesmith, D.W. Hydrogen transport through thin titanium oxides. J. Electroanal. Chem. 2010, 649, 277–285. [Google Scholar] [CrossRef]
- Vezvaie, M.; Noël, J.J.; Tun, Z.; Shoesmith, D.W. Hydrogen Absorption into Titanium under Cathodic Polarization: An In-Situ Neutron Reflectometry and EIS Study. J. Electrochem. Soc. 2013, 160, C414–C422. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, Z.H.; Liu, J.; Schaller, R.F.; Asselin, E. Electrochemical Investigation and Identification of Titanium Hydrides Formed in Mixed Chloride Sulfuric Acid Solution. J. Electrochem. Soc. 2019, 166, C3096–C3105. [Google Scholar] [CrossRef]
- Yokoyama, K.; Ogawa, T.; Asaoka, K.; Sakai, J. Hydrogen absorption of titanium in acidic fluoride solutions. Mater. Sci. Eng. A 2004, 384, 19–25. [Google Scholar] [CrossRef]
- Alagia, M.; Palombari, R. On the electrochemical properties of titanium hydride. J. Electroanal. Chem. 1991, 316, 347–352. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Masuda, M.; Sato, N. Cathodic Reduction of Anodic Oxide Films Formed on Titanium. J. Electrochem. Soc. 1987, 134, 2406–2410. [Google Scholar] [CrossRef]
- Lynkov, L.M.; Boldysheva, I.P.; Poznyak, A.A. Electrochemical anodizing of thin-film samples of hydrogenated titanium. Izvestiya Belorusskoy inzhenernoy akademii. Bull. Belarusian Eng. Acad. 1999, 1, 10–11. [Google Scholar]
- Boldysheva, I.P.; Lynkov, L.M.; Poznyak, A.A. Destruction Hydrogenated Titanium and Zirconium Films During Hydrogen Annealing and Anodization for Lift-off Litography. In Proceedings of the VIII-th International Symposium “Advanced Display Technologies”, Novy Svit, Crimea, Ukraine, 10–14 October 1999; pp. 256–259. [Google Scholar]
- Tanaka, S.; Aonuma, M.; Hirose, N.; Tanaki, T. The Preparation of Porous TiO2 by Immersing Ti in NaOH Solution. J. Electrochem. Soc. 2002, 149, D167. [Google Scholar] [CrossRef]
- Tanaka, S.; Iwatani, T.; Hirose, N.; Tanaki, T. Effect of Hydrogen on the Formation of Porous TiO2 in Alkaline Solution. J. Electrochem. Soc. 2002, 149, F186. [Google Scholar] [CrossRef]
- Cheng, H.-C.; Lee, S.-Y.; Tsai, C.-M.; Chen, C.-C.; Ou, K.-L. Effect of Hydrogen on Formation of Nanoporous TiO2 by Anodization with Hydrogen-Fluoride Pretreatment. Electrochem. Solid-State Lett. 2006, 9, D25. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Lin, C.-T.; Liu, C.-M.; Chen, C.-C.; Chen, C.-S.; Ou, K.-L. Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti. Appl. Surf. Sci. 2007, 253, 3678–3682. [Google Scholar] [CrossRef]
- Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L. Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment. J. Electrochem. Soc. 2007, 154, E13. [Google Scholar] [CrossRef]
- Lan, W.-C.; Wang, C.-H.; Huang, B.-H.; Cho, Y.-C.; Saito, T.; Huang, C.-C.; Huang, M.-S. Fabrication of a Promising Hierarchical Porous Surface on Titanium for Promoting Biocompatibility. Appl. Sci. 2020, 10, 1363. [Google Scholar] [CrossRef] [Green Version]
- Pligovka, A.; Lazavenka, A.; Gorokh, G. Anodic niobia column-like 3-D nanostructures for semiconductor devices. IEEE Trans. Nanotechnol. 2019, 18, 790–797. [Google Scholar] [CrossRef]
- Surganov, V.F.; Poznyak, A.A. Dissolution of aluminum in the first stage of anodic oxidation in solution of boric acid. Russ. J. Appl. Chem. 1997, 70, 404–406. [Google Scholar]
- Li, Y.; Shimada, H.; Sakairi, M.; Shigyo, K.; Takahashi, H.; Seo, M. Formation and Breakdown of Anodic Oxide Films on Aluminum in Boric Acid/Borate Solutions. J. Electrochem. Soc. 1997, 144, 866–876. [Google Scholar] [CrossRef]
- Stojadinovic, S.; Vasilic, R.; Nedic, Z.; Kasalica, B.; Belca, I.; Zekovic, L. Photoluminescent properties of barrier anodic oxide films on aluminum. Thin Solid Films 2011, 519, 3516–3521. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Turavets, U.; Norek, M. On-Aluminum and Barrier Anodic Oxide: Meeting Various Acids and Solutions. Coatings 2020, 10, 875–887. [Google Scholar] [CrossRef]
- Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev. 1969, 69, 365–405. [Google Scholar] [CrossRef]
- Delplancke, J.-L.; Winand, R. Galvanostatic anodization of titanium—I. Structures and compositions of the anodic films. Electrochim. Acta 1988, 33, 1539–1549. [Google Scholar] [CrossRef]
- Santos, J.S.; Lemos, S.G.; Gonçalves, W.N.; Bruno, O.M.; Pereira, E.C. Characterization of electrical discharges during spark anodization of zirconium in different electrolytes. Electrochim. Acta 2014, 130, 477–487. [Google Scholar] [CrossRef]
- Wilhelmsen, W. Passive behaviour of tantalum. Electrochim. Acta 1988, 33, 63–67. [Google Scholar] [CrossRef]
- Gomes, M.A.B.; Onofre, S.; Juanto, S.; de S. Bulhões, L.O. Anodization of niobium in sulphuric acid media. J. Appl. Electrochem. 1991, 21, 1023–1026. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznyak, A.; Pligovka, A.; Salerno, M. Anodizing of Hydrogenated Titanium and Zirconium Films. Materials 2021, 14, 7490. https://doi.org/10.3390/ma14247490
Poznyak A, Pligovka A, Salerno M. Anodizing of Hydrogenated Titanium and Zirconium Films. Materials. 2021; 14(24):7490. https://doi.org/10.3390/ma14247490
Chicago/Turabian StylePoznyak, Alexander, Andrei Pligovka, and Marco Salerno. 2021. "Anodizing of Hydrogenated Titanium and Zirconium Films" Materials 14, no. 24: 7490. https://doi.org/10.3390/ma14247490
APA StylePoznyak, A., Pligovka, A., & Salerno, M. (2021). Anodizing of Hydrogenated Titanium and Zirconium Films. Materials, 14(24), 7490. https://doi.org/10.3390/ma14247490