Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Set-Up of Inkjet Printer
2.3. Device Fabrication
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tavakoli, M.M.; Giordano, F.; Zakeeruddin, S.M.; Grätzel, M. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics. Nano Lett. 2018, 18, 2428–2434. [Google Scholar] [CrossRef]
- Lee, Y.; Paek, S.; Cho, K.T.; Oveisi, E.; Gao, P.; Lee, S.; Park, J.-S.; Zhang, Y.; Humphry-Baker, R.; Asiri, A.M.; et al. Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 12729–12734. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.; Park, Y.H.; Bae, S.; Park, M.; Jeong, H.; Lee, P.; Ko, M.J. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 36865–36874. [Google Scholar] [CrossRef]
- Jung, E.H.; Jeon, N.J.; Park, E.Y.; Moon, C.S.; Shin, T.J.; Yang, T.-Y.; Noh, J.H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nat. Cell Biol. 2019, 567, 511–515. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 12 January 2021).
- Tsvetkov, N.; Moon, B.C.; Lee, J.Y.; Kang, J.K. Controlled Synthesis of Nanocrystalline Nb:SrTiO3 Electron Transport Layers for Robust Interfaces and Stable High Photovoltaic Energy Conversion Efficiency in Perovskite Halide Solar Cells. ACS Appl. Energy Mater. 2020, 3, 344–351. [Google Scholar] [CrossRef]
- Yi, H.; Wang, D.; Mahmud, M.A.; Haque, F.; Upama, M.B.; Xu, C.; Duan, L.; Uddin, A. Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6027–6039. [Google Scholar] [CrossRef]
- Giordano, F.; Abate, A.; Baena, J.-P.C.; Saliba, M.; Matsui, T.; Im, S.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Y.; Tu, W.; Li, Z.; Bao, C.; Dai, H.; Yu, T.; Liu, J.; Zou, Z. Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale 2013, 5, 3481–3485. [Google Scholar] [CrossRef]
- Wang, J.T.-W.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, K.; Stranks, S.D.; Abate, A.; Sadoughi, G.; Sadhanala, A.; Kopidakis, N.; Rumbles, G.; Li, C.-Z.; Friend, R.H.; Jen, A.K.-Y.; et al. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano 2014, 8, 12701–12709. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Rui, Y.; Zhang, X.; Shi, J.; Wang, X.; Wang, Y.; Yang, J.; Zhang, Q. Anatase TiO2 nanorod arrays as high-performance elec-tron transport layers for perovskite solar cells. J. Alloys Compd. 2020, 849, 156629. [Google Scholar] [CrossRef]
- Choi, J.; Song, S.; Hörantner, M.T.; Snaith, H.J.; Park, T. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano 2016, 10, 6029–6036. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Chen, X.; Yang, S.; Li, C.; Zhao, H.; Yang, H.G. A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1700878. [Google Scholar] [CrossRef]
- Bera, A.; Wu, K.W.; Sheikh, A.; Alarousu, E.; Mohammed, O.F.; Wu, T. Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 28494–28501. [Google Scholar] [CrossRef]
- Neophytou, M.; de Bastiani, M.; Gasparini, N.; Aydin, E.; Ugur, E.; Seitkhan, A.; Moruzzi, F.; Choaie, Y.; Ramadan, A.J.; Troughton, J.R.; et al. Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO3) Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 8090–8097. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Hu, Y.; Huang, L.; Fu, J.; Jin, J.; Shi, W.; Wang, L.; Yang, W. Graphene/SrTiO3nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells. RSC Adv. 2015, 5, 52041–52047. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, C.; Tang, Y.; Huang, L.; Fu, J.; Shi, W.; Wang, L.; Yang, W. Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. J. Alloys Compd. 2016, 679, 32–38. [Google Scholar] [CrossRef]
- Okamoto, Y.; Fukui, R.; Fukazawa, M.; Suzuki, Y. SrTiO3/TiO2 composite electron transport layer for perovskite solar cells. Mater. Lett. 2017, 187, 111–113. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. SrTiO3/Al2O3-Graphene Electron Transport Layer for Highly Stable and Efficient Com-posites-Based Perovskite Solar Cells with 20.6% Efficiency. Adv. Energy Mater. 2020, 10, 1903369. [Google Scholar] [CrossRef]
- Yeom, E.J.; Shin, S.S.; Yang, W.S.; Lee, S.J.; Yin, W.; Kim, D.; Noh, J.H.; Ahn, T.K.; Seok, S.I. Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. J. Mater. Chem. A 2017, 5, 79–86. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2017, 2, 16177. [Google Scholar] [CrossRef]
- Anaraki, E.H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128–3134. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C.-C.; Yang, S.; Jen, A.K.-Y. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Adv. Mater. 2016, 28, 6478–6484. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Qin, M.; Chen, C.; Wen, J.; Yang, G.; Guo, Y.; Ma, J.; Zhang, Q.; Qin, P.; Li, S.; et al. Fully High-Temperature-Processed SnO2as Blocking Layer and Scaffold for Efficient, Stable, and Hysteresis-Free Mesoporous Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1706276. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Huang, Y.; Liu, F.; Lv, M.; Chen, S.; Hu, L.; Tang, J.; Yao, J.; Dai, S. Mesoporous SnO2 nanoparticle films as elec-tron-transporting material in perovskite solar cells. RSC Adv. 2015, 5, 28424–28429. [Google Scholar] [CrossRef]
- Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S.F. Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421–2429. [Google Scholar] [CrossRef]
- Yang, G.; Lei, H.; Tao, H.; Zheng, X.; Ma, J.; Liu, Q.; Ke, W.; Chen, Z.; Xiong, L.; Qin, P.; et al. Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2Nanosheets as Electron Selective Layers. Small 2017, 13, 1601769. [Google Scholar] [CrossRef] [PubMed]
- Roose, B.; Johansen, C.M.; Dupraz, K.; Jaouen, T.; Aebi, P.; Steiner, U.; Abate, A. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells. J. Mater. Chem. A 2018, 6, 1850–1857. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.H.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E.H. Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 2796–2801. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, F.; Chi, D.; Shi, K.; Huang, S. High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer. Mater. Adv. 2020, 1, 617–624. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Z.; Xu, J.; Wang, P.; Wang, L.; Zhang, J.; Zhu, Y. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 164, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V.C.; Oveisi, E.; Lesch, A.; Kinge, S.; Dyson, P.J.; Girault, H.; et al. Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Buffiere, M.; Ali, K.; Fares, E.; Samara, A.; Shetty, A.R.; Al Hassan, O.; Belaidi, A. Inkjet-Printed Compact TiO 2 Electron Transport Layer for Perovskite Solar Cells. Energy Technol. 2020, 8, 2000330. [Google Scholar] [CrossRef]
- Rohnacher, V.; Ullrich, F.; Eggers, H.; Schackmar, F.; Hell, S.; Salazar, A.; Huck, C.; Hernandez-Sosa, G.; Paetzold, U.W.; Jaegermann, W.; et al. Analytical Study of Solution-Processed Tin Oxide as Electron Transport Layer in Printed Perovskite Solar Cells. Adv. Mater. Technol. 2021, 6, 2000282. [Google Scholar] [CrossRef]
- Xie, M.; Lu, H.; Zhang, L.; Wang, J.; Luo, Q.; Lin, J.; Ba, L.; Liu, H.; Shen, W.; Shi, L.; et al. Fully Solution-Processed Semi-Transparent Perovskite Solar Cells with Ink-Jet Printed Silver Nanowires Top Electrode. Sol. RRL 2018, 2, 1700184. [Google Scholar] [CrossRef]
- Li, S.-G.; Jiang, K.-J.; Su, M.-J.; Cui, X.-P.; Huang, J.-H.; Zhang, Q.-Q.; Zhou, X.-Q.; Yang, L.-M.; Song, Y.-L. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 2015, 3, 9092–9097. [Google Scholar] [CrossRef]
- Gheno, A.; Huang, Y.; Bouclé, J.; Ratier, B.; Rolland, A.; Even, J.; Vedraine, S. Toward Highly Efficient Inkjet-Printed Perovskite Solar Cells Fully Processed Under Ambient Conditions and at Low Temperature. Sol. RRL 2018, 2, 1800191. [Google Scholar] [CrossRef]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B.; Hernandez-Sosa, G.; Paetzold, U.W. Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains. Adv. Energy Mater. 2020, 10, 1903184. [Google Scholar] [CrossRef] [Green Version]
- Schackmar, F.; Eggers, H.; Frericks, M.; Richards, B.S.; Lemmer, U.; Hernandez-Sosa, G.; Paetzold, U.W. Perovskite Solar Cells with All-Inkjet-Printed Absorber and Charge Transport Layers. Adv. Mater. Technol. 2021, 6, 2000271. [Google Scholar] [CrossRef]
- Jung, K.-H.; Seo, J.-Y.; Lee, S.; Shin, H.; Park, N.-G. Solution-processed SnO2thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J. Mater. Chem. A 2017, 5, 24790–24803. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, D.; Grice, C.R.; Liao, W.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P.J.; Chen, J.; Yu, Z.; et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 12080–12087. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, X.; Lei, H.; Ke, W.; Chen, C.; Chen, Z.; Yang, G.; Fang, G. Highly Efficient and Stable Planar Perovskite Solar Cells with Large-Scale Manufacture of E-Beam Evaporated SnO2 Toward Commercialization. Sol. RRL 2017, 1, 1700118. [Google Scholar] [CrossRef]
- Liu, X.; Tsai, K.-W.; Zhu, Z.; Sun, Y.; Chueh, C.-C.; Jen, A.K.-Y. A Low-Temperature, Solution Processable Tin Oxide Electron-Transporting Layer Prepared by the Dual-Fuel Combustion Method for Efficient Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1600122. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, P.; Sadollahkhani, A.; Li, Y.; Zhang, B.; Zhang, F.; Safdari, M.; Hao, Y.; Hua, Y.; Kloo, L. Investigation of Tri-phenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega 2017, 2, 9231–9240. [Google Scholar] [CrossRef]
- Bernacka-Wojcik, I.; Wojcik, P.J.; Aguas, H.; Fortunato, E.; Martins, R. Inkjet printed highly porous TiO 2 films for improved electrical properties of photoanode. J. Colloid Interface Sci. 2016, 465, 208–214. [Google Scholar] [CrossRef]
- Cherrington, R.; Hughes, D.J.; Senthilarasu, S.; Goodship, V. Inkjet-Printed TiO2Nanoparticles from Aqueous Solutions for Dye-Sensitized Solar Cells (DSSCs). Energy Technol. 2015, 3, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Yoon, H.G.; Lee, S.-N.; Kim, H.-K.; Kim, J. Inkjet-Printing of TiO2Co-Solvent Ink: From Uniform Ink-Droplet to TiO2 Photoelectrode for Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2011, 159, B34–B38. [Google Scholar] [CrossRef]
- Kunugi, Y.; Shimoyama, Y.; Umezu, S. Fabrication of Dye-sensitized Solar Cells Using Electrostatic Inkjet Printing. J. Photopolym. Sci. Technol. 2013, 26, 383–385. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Jungmann, G.; Jäger, C.; Haarer, D.; Schmidt, H.-W.; Thelakkat, M. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Co-Ord. Chem. Rev. 2004, 248, 1479–1489. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Chen, H.; Zhang, K.; Qin, C.; Liu, J.; Peng, W.; Islam, A.; Bi, E.; Ye, F.; et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 2014, 7, 052301. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827. [Google Scholar] [CrossRef]
- Li, Y.-F.; Sheng, Y.-J.; Tsao, H.-K. Evaporation Stains: Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis. Langmuir 2013, 29, 7802–7811. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jeong, S.; Park, B.K.; Moon, J. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 2006, 89, 264101. [Google Scholar] [CrossRef]
- Park, J.; Moon, J. Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing. Langmuir 2006, 22, 3506–3513. [Google Scholar] [CrossRef]
- Sun, D.; Chen, C.; Zhang, J.; Wu, X.; Chen, H.; Guo, T. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight. Appl. Phys. Lett. 2018, 112, 012102. [Google Scholar] [CrossRef]
- Soltman, D.; Subramanian, V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect. Langmuir 2008, 24, 2224–2231. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Li, M.; Song, Y. Rate-dependent interface capture beyond the coffee-ring effect. Sci. Rep. 2016, 6, 24628. [Google Scholar] [CrossRef] [Green Version]
- Yunker, P.J.; Still, T.; Lohr, M.A.; Yodh, A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nat. Cell Biol. 2011, 476, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Fang, K.; Bukhari, M.N.; Song, Y.; Zhang, K. Effects of Viscosity and Surface Tension of a Reactive Dye Ink on Droplet Formation. Langmuir 2020, 36, 9481–9488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, J.; Guo, D.; Ning, H.; Zhou, S.; Liang, Z.; Yao, R.; Wang, Y.; Lu, X.; Peng, J. Functional Metal Oxide Ink Systems for Drop-on-Demand Printed Thin-Film Transistors. Langmuir 2020, 36, 8655–8667. [Google Scholar] [CrossRef] [PubMed]
- Phoon, B.L.; Lai, C.W.; Pan, G.-T.; Yang, T.C.-K.; Juan, J.C. One-pot hydrothermal synthesis of strontium titanate nanoparticles photoelectrode using electrophoretic deposition for enhancing photoelectrochemical water splitting. Ceram. Int. 2018, 44, 9923–9933. [Google Scholar] [CrossRef]
Ink Concentration | Solvent | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | Rs (Ω·cm2) | Rsh (kΩ·cm2) | ||
---|---|---|---|---|---|---|---|---|---|
S1 | 0.25M TiO2 | IPE | average | 10.64 ± 2.21 | 0.99 ± 0.11 | 20.06 ± 0.20 | 0.53 ± 0.07 | ||
champion | 12.60 | 1.04 | 19.83 | 0.61 | 7.8 | 2.0 | |||
S2 | 0.25M TiO2 | EtOH:EG | average | 10.97 ± 0.84 | 1.01 ± 0.01 | 18.83 ± 0.26 | 0.57 ± 0.04 | ||
champion | 11.94 | 1.04 | 18.95 | 0.61 | 8.0 | 0.9 | |||
S3 | 0.35M TiO2 | EtOH:EG | average | 11.26 ± 0.49 | 1.02 ± 0.01 | 19.30 ± 0.36 | 0.57 ± 0.01 | ||
champion | 12.42 | 1.05 | 19.63 | 0.60 | 7.7 | 2.0 | |||
S4 | 0.25M SrTiO3 | IPE | average | 9.54 ± 1.07 | 1.05 ± 0.05 | 17.08 ± 0.57 | 0.53 ± 0.03 | ||
champion | 10.76 | 1.08 | 17.48 | 0.57 | 12 | 0.4 | |||
S5 | 0.25M SrTiO3 | EtOH:EG | average | 11.25 ± 1.30 | 1.06 ± 0.07 | 18.99 ± 0.63 | 0.56 ± 0.03 | ||
champion | 12.41 | 1.08 | 20.06 | 0.57 | 16 | 1.0 |
Sample | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | Rs (Ω·cm2) | Rsh (kΩ·cm2) | |
---|---|---|---|---|---|---|---|
0.35M SrTiO3 | average | 9.81 ± 1.34 | 1.03 ± 0.02 | 17.51 ± 1.05 | 0.54 ± 0.03 | ||
champion | 12.04 | 1.07 | 18.99 | 0.59 | 11 | 0.6 | |
0.25M SrTiO3 | average | 10.33 ± 1.28 | 1.04 ± 0.03 | 18.06 ± 1.00 | 0.55 ± 0.05 | ||
champion | 11.98 | 1.07 | 17.79 | 0.63 | 11 | 3.3 | |
0.15M SrTiO3 | average | 12.75 ± 0.97 | 1.07 ± 0.01 | 18.77 ± 0.84 | 0.63 ± 0.03 | ||
champion | 14.56 | 1.08 | 20.16 | 0.67 | 9.7 | 5.0 |
Sample | Scan Direction | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | Rs (Ω·cm2) | Rsh (kΩ·cm2) |
---|---|---|---|---|---|---|---|
SrTiO3/0% TiO2 | reverse | 13.31 ± 0.65 | 1.11 ± 0.02 | 20.33 ± 0.30 | 0.59 ± 0.03 | ||
forward | 8.54 ± 0.90 | 1.03 ± 0.03 | 20.06 ± 0.32 | 0.41 ± 0.03 | |||
champion | 14.46 | 1.12 | 20.38 | 0.63 | 9.7 | 2.0 | |
SrTiO3/5% TiO2 | reverse | 14.37 ± 0.70 | 1.11 ± 0.01 | 21.00 ± 0.25 | 0.62 ± 0.03 | ||
forward | 11.39 ± 0.26 | 1.06 ± 0.02 | 21.10 ± 0.19 | 0.51 ± 0.01 | |||
champion | 15.23 | 1.10 | 21.09 | 0.65 | 8.3 | 1.4 | |
SrTiO3/10% TiO2 | reverse | 15.34 ± 0.70 | 1.11 ± 0.00 | 21.11 ± 0.17 | 0.66 ± 0.03 | ||
forward | 11.73 ± 0.61 | 1.05 ± 0.02 | 21.09 ± 0.16 | 0.53 ± 0.03 | |||
champion | 15.73 | 1.10 | 20.99 | 0.68 | 7.0 | 2.5 | |
SrTiO3/15% TiO2 | reverse | 15.07 ± 0.45 | 1.11 ± 0.00 | 20.94 ± 0.39 | 0.65 ± 0.01 | ||
forward | 12.05 ± 0.42 | 1.06 ± 0.01 | 20.98 ± 0.38 | 0.54 ± 0.02 | |||
champion | 15.86 | 1.11 | 21.36 | 0.67 | 7.3 | 3.3 | |
SrTiO3/20% TiO2 | reverse | 13.93 ± 0.72 | 1.10 ± 0.01 | 20.62 ± 0.25 | 0.61 ± 0.03 | ||
forward | 11.12 ± 0.69 | 1.06 ± 0.02 | 20.64 ± 0.12 | 0.51 ± 0.02 | |||
champion | 14.80 | 1.11 | 20.99 | 0.64 | 8.7 | 1.0 |
Sample | SrTiO3/0% TiO2 | SrTiO3/5% TiO2 | SrTiO3/10% TiO2 | SrTiO3/15% TiO2 | SrTiO3/20% TiO2 |
---|---|---|---|---|---|
Hysteresis index | 0.36 | 0.21 | 0.24 | 0.20 | 0.20 |
Cells | Numbers of Devices | Scan Direction | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | HysteresisIndex | Rs (Ω·cm2) | Rsh (kΩ·cm2) |
---|---|---|---|---|---|---|---|---|---|
0.375% | 14 | reverse | 16.61 ± 0.70 | 1.10 ± 0.01 | 20.85 ± 0.26 | 0.73 ± 0.02 | 0.16 ± 0.03 | ||
forward | 13.93 ± 0.66 | 1.02 ± 0.01 | 21.01 ± 0.24 | 0.65 ± 0.03 | |||||
champion | 17.37 | 1.10 | 21.13 | 0.75 | 4.9 | 5.0 | |||
0.75% | 7 | reverse | 15.57 ± 0.66 | 1.06 ± 0.00 | 20.42 ± 0.36 | 0.72 ± 0.02 | 0.21 ± 0.02 | ||
forward | 12.29 ± 0.45 | 0.94 ± 0.01 | 20.42 ± 0.45 | 0.64 ± 0.02 | |||||
champion | 16.53 | 1.06 | 20.96 | 0.74 | 5.7 | 2.5 | |||
1.5% | 8 | reverse | 11.30 ± 0.77 | 0.95 ± 0.03 | 18.81 ± 0.46 | 0.63 ± 0.03 | 0.13 ± 0.04 | ||
forward | 9.85 ± 0.48 | 0.85 ± 0.02 | 18.73 ± 0.56 | 0.62 ± 0.03 | |||||
champion | 12.59 | 0.99 | 19.58 | 0.65 | 9.5 | 1.1 | |||
3% | 7 | reverse | 10.32 ± 0.81 | 0.91 ± 0.04 | 17.82 ± 0.45 | 0.64 ± 0.05 | 0.06 ± 0.03 | ||
forward | 9.73 ± 0.63 | 0.85 ± 0.03 | 17.72 ± 0.52 | 0.65 ± 0.04 | |||||
champion | 11.70 | 0.94 | 18.25 | 0.68 | 8.5 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Zhang, W.; Kloo, L.; Belova, L. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials 2021, 14, 7525. https://doi.org/10.3390/ma14247525
Lu D, Zhang W, Kloo L, Belova L. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials. 2021; 14(24):7525. https://doi.org/10.3390/ma14247525
Chicago/Turabian StyleLu, Dongli, Wei Zhang, Lars Kloo, and Liubov Belova. 2021. "Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells" Materials 14, no. 24: 7525. https://doi.org/10.3390/ma14247525
APA StyleLu, D., Zhang, W., Kloo, L., & Belova, L. (2021). Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 14(24), 7525. https://doi.org/10.3390/ma14247525