Future Study of Dense Superconducting Hydrides at High Pressure
Abstract
:1. Introduction
2. Discussions
2.1. Unexplained Anomalous Superconducting Behaviors in Hydrides
2.2. How to Understand the Origin of the Highest Tc in Hydrides
2.3. The Limits of the BCS-Eliashberg Theory
- (1)
- The Migdal-Eliashberg (ME) theory [41,42], in which vertex corrections are neglected for simplification, usually describes electron-phonon coupling effects accurately for conventional superconductors. As the electron-electron repulsion in the theory is usually approximated by an empirical parameter μ* (mostly considered to be ~0.1) to reproduce the experimental Tc [43], this approach becomes less accurate in the limit of sizeable electron–phonon coupling or in the case of systems with strongly anisotropic electronic properties [68,78,79,80]. It is more appropriate to use other methods based on a perturbative Green’s function approach such as the full ab-initio Migdal–Eliashberg approach or SCDFT method [44,45,68]. The latter recently has been applied to reproduce the Tc of H3S, in good agreement with the experiment [44].
- (2)
- Neglecting the energy dependence of density of states (DOS) around the Fermi level in the Migdal–Eliashberg theory for simplification may overlook some peculiar energy dependent electronic structures occurring in hydrides (i.e van Hove singularity in H3S [63,66,81,82] and LaH10 [68], Fermiology due to Lifshitz transitions [70]) around Fermi level, which may suppress the Tc. For instance, predictions beyond the constant DOS approximation, by explicitly considering the electronic structure around the Fermi level in H3S, show the constant DOS approximation employed, to date, overestimates Tc by ∼60 K, or underestimates by ∼10 K when the energy dependence of DOS are present or absent near the Fermi level [66], respectively.
- (3)
- Because of the low mass of hydrogen and its large quantum fluctuations from equilibrium, substantial anharmonic corrections to Tc have been predicted in some superconducting hydrides and phases of hydrogen [27,72,73,74,75,76]. For instance, PtH at 100 GPa shows strong anharmonic hardening of the phonon energies, which suppresses the Tc by over an order of magnitude [73]. Anharmonic effects are also predicted to lead to an inverse isotope effect in superconducting palladium hydride [74] and cause the value of Tc falls 22% from 250 K to 194 K in H3S [27]. Thus, it becomes urgent to extensively develop an understanding of the anharmonic effects on Tc of the superconducting dense hydrides.
2.4. More Experiments Are Demanded
- (1)
- Crystal structure determination of hydrides. Crystal structure is the most fundamental information, however, to date, the positions of H atoms in hydrides remain undetermined with conventional X-ray methods due to their weak scattering power. Consequently, all hydrogen network and the nature of bonding predicted from theory have never been confirmed. However, owing to the new technology developments of high pressure X-ray diffraction beamline for diamond anvil cell [86], recently a successful unit cell parameters determination of the phase IV of hydrogen at 200 GPa with synchrotron X-ray by Ji et al. [87,88] shows promise for conquering the problems in the future. Powder neutron diffraction has been applied at high pressure study up to 90 GPa and could be an ideal probe to study the H structures [89].
- (2)
- The magnetic responses of superconducting hydrides. To date, only seven magnetization measurements have been reported: AC magnetic susceptibility measurements for CSH [11], three for HxS [8,54,56], LaHx [38,54], the nuclear resonant scattering measurements for H3S [55]. However, the magnetic signal from samples are commonly complicated by the noise from backgrounds [57,58,59], which leaves the reported Meissner effects in debate [57,58,59]. To increase the required signal-to-background ratio required the development of a new high-pressure technique, such as specially designed miniature nonmagnetic DAC cells made of Cu-Ti alloy is needed to accommodate in a SQUID magnetometer [90].
- (3)
- Electronic and vibrational properties of hydrides. The electron pairing in hydrides are mediated by electron-phonon coupling, which is essentially associated with interactions between the electronic states near Fermi level and the high frequencies phonons of H atoms. The information on the electronic and vibrational properties of H is crucial for understanding the mechanisms underlying the material-dependent high Tc in hydrides. Experimentally, the electronic structure of H atoms (and host atoms) can be probed with X-ray Raman [91] and nuclear magnetic resonance spectroscopy [92]. The vibrational properties of hydrides can be obtained from the phonon dispersion, which can be measured with the high resolution (meV)-energy resolution inelastic X-ray scattering. The zone-center vibrational optical modes and superconducting gap can be also studied with or Raman and Infrared spectroscopes [93].
2.5. Perspective
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onnes, H.K. The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden 1911, 122, 122–124. [Google Scholar]
- Schilling, A.; Cantoni, M.; Guo, J.D.; Ott, H.R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 1993, 363, 56–58. [Google Scholar] [CrossRef]
- Gao, L.; Xue, Y.Y.; Chen, F.; Xiong, Q.; Meng, R.L.; Ramirez, D.; Chu, C.W.; Eggert, J.H.; Mao, H.K. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 1994, 50, 4260–4263. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.A.; Lu, W.; Yang, J.; Yi, W.; Shen, X.L.; Li, Z.C.; Che, G.C.; Dong, X.L.; Sun, L.L.; Zhou, F.; et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1–xFx]FeAs. In Superconductivity Centennial; Peking University-World Scientific Advanced Physics Series; World Scientific: Singapore, 2018; pp. 223–227. [Google Scholar]
- Wang, Q.-Y.; Li, Z.; Zhang, W.-H.; Zhang, Z.-C.; Zhang, J.-S.; Li, W.; Ding, H.; Ou, Y.-B.; Deng, P.; Chang, K.; et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Ashcroft, N.W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 2004, 92, 187002. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef] [Green Version]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K.V.; Salamat, A.; Dias, R.P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 2020, 586, 373–377. [Google Scholar] [CrossRef]
- Drozdov, A.; Eremets, M.; Troyan, I. Superconductivity above 100 K in PH3 at high pressures. arXiv 2015, arXiv:1508.06224. [Google Scholar]
- Kong, P.; Minkov, V.; Kuzovnikov, M.; Besedin, S.; Drozdov, A.; Mozaffari, S.; Balicas, L.; Balakirev, F.; Prakapenka, V.; Greenberg, E. Superconductivity up to 243 K in yttrium hydrides under high pressure. arXiv 2019, arXiv:1909.10482. [Google Scholar]
- Troyan, I.A.; Semenok, D.V.; Kvashnin, A.G.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Ivanova, A.G.; Prakapenka, V.B.; Greenberg, E.; Gavriliuk, A.G.; et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 2021, 33, 2006832. [Google Scholar] [CrossRef]
- Semenok, D.V.; Kvashnin, A.G.; Ivanova, A.; Svitlyk, V.; Fominski, V.Y.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Troyan, I.A.; Oganov, A.R. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today 2019, 33, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Semenok, D.V.; Duan, D.; Xie, H.; Chen, W.; Huang, X.; Li, X.; Liu, B.; Oganov, A.R.; Cui, T. Superconducting praseodymium superhydrides. Sci. Adv. 2020, 6, eaax6849. [Google Scholar] [CrossRef] [Green Version]
- Semenok, D.V.; Troyan, I.A.; Ivanova, A.G.; Kvashnin, A.G.; Kruglov, I.A.; Hanfland, M.; Sadakov, A.V.; Sobolevskiy, O.A.; Pervakov, K.S.; Lyubutin, I.S.; et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 2021, 48, 18–28. [Google Scholar] [CrossRef]
- Chen, W.; Semenok, D.V.; Huang, X.; Shu, H.; Li, X.; Duan, D.; Cui, T.; Oganov, A.R. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 2021, 127, 117001. [Google Scholar] [CrossRef]
- Hong, F.; Shan, P.; Yang, L.; Yue, B.; Yang, P.; Liu, Z.; Sun, J.; Dai, J.; Yu, H.; Yin, Y. Superconductivity at ~70 K in tin hydride SnHx under high pressure. arXiv 2021, arXiv:2101.02846. [Google Scholar]
- Chen, W.; Semenok, D.V.; Kvashnin, A.G.; Huang, X.; Kruglov, I.A.; Galasso, M.; Song, H.; Duan, D.; Goncharov, A.F.; Prakapenka, V.B.; et al. Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun. 2021, 12, 273. [Google Scholar] [CrossRef]
- Ma, L.; Wang, K.; Xie, Y.; Yang, X.; Wang, Y.; Zhou, M.; Liu, H.; Liu, G.; Wang, H.; Ma, Y. Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures. arXiv 2021, arXiv:2103.16282. [Google Scholar]
- Shao, M.; Chen, S.; Chen, W.; Zhang, K.; Huang, X.; Cui, T. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem. 2021, 60, 15330–15335. [Google Scholar] [CrossRef] [PubMed]
- Shipley, A.M.; Hutcheon, M.J.; Needs, R.J. High-throughput discovery of high-temperature conventional superconductors. arXiv 2021, arXiv:2105.02296v2 2021. [Google Scholar] [CrossRef]
- Pickard, C.J.; Errea, I.; Eremets, M.I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 2020, 11, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, N.; Hellberg, C.S.; Johannes, M.D.; Mazin, I.I.; Mehl, M.J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 2015, 91, 060511. [Google Scholar] [CrossRef] [Green Version]
- Duan, D.; Liu, Y.; Tian, F.; Li, D.; Huang, X.; Zhao, Z.; Yu, H.; Liu, B.; Tian, W.; Cui, T. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 2014, 4, 6968. [Google Scholar] [CrossRef] [Green Version]
- Errea, I.; Calandra, M.; Pickard, C.J.; Nelson, J.R.; Needs, R.J.; Li, Y.; Liu, H.; Zhang, Y.; Ma, Y.; Mauri, F. High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 2015, 114, 157004. [Google Scholar] [CrossRef]
- Flores-Livas, J.A.; Amsler, M.; Heil, C.; Sanna, A.; Boeri, L.; Profeta, G.; Wolverton, C.; Goedecker, S.; Gross, E. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 2016, 93, 020508. [Google Scholar] [CrossRef] [Green Version]
- Flores-Livas, J.A.; Sanna, A.; Gross, E. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 2016, 89, 63. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hao, J.; Liu, H.; Li, Y.; Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 2014, 140, 174712. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Naumov, I.I.; Hoffmann, R.; Ashcroft, N.W.; Hemley, R.J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA 2017, 114, 6990–6995. [Google Scholar] [CrossRef] [Green Version]
- Nicol, E.J.; Carbotte, J.P. Comparison of pressurized sulfur hydride with conventional superconductors. Phys. Rev. B 2015, 91, 220507. [Google Scholar] [CrossRef] [Green Version]
- Papaconstantopoulos, D.A.; Klein, B.M.; Mehl, M.J.; Pickett, W.E. Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B 2015, 91, 184511. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Sun, Y.; Pickard, C.J.; Needs, R.J.; Wu, Q.; Ma, Y. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett. 2017, 119, 107001. [Google Scholar] [CrossRef]
- Salke, N.P.; Davari Esfahani, M.M.; Zhang, Y.; Kruglov, I.A.; Zhou, J.; Wang, Y.; Lin, J. Synthesis of clathrate cerium superhydride CeH9 at 80 GPa with anomalously short H.. H distance. arXiv 2018, arXiv:1805.02060. [Google Scholar]
- Tsuppayakorn-Aek, P.; Pinsook, U.; Luo, W.; Ahuja, R.; Bovornratanaraks, T. Superconductivity of superhydride CeH10 under high pressure. Mater. Res. Express 2020, 7, 086001. [Google Scholar] [CrossRef]
- Zurek, E.; Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys. 2019, 150, 050901. [Google Scholar] [CrossRef]
- Struzhkin, V.; Li, B.; Ji, C.; Chen, X.-J.; Prakapenka, V.; Greenberg, E.; Troyan, I.; Gavriliuk, A.; Mao, H.-K. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extrem. 2020, 5, 028201. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lou, H.; Zeng, Z.; Cheng, B.; Zhang, X.; Liu, Y.; Xu, D.; Yang, K.; Zeng, Q. Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure. Matter Radiat. Extrem. 2021, 6, 038402. [Google Scholar] [CrossRef]
- Chen, X.-J. Exploring high-temperature superconductivity in hard matter close to structural instability. Matter Radiat. Extrem. 2020, 5, 068102. [Google Scholar] [CrossRef]
- Eliashberg, G. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 1960, 11, 696–702. [Google Scholar]
- Migdal, A. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 1958, 7, 996–1001. [Google Scholar]
- Morel, P.; Anderson, P.W. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 1962, 125, 1263–1271. [Google Scholar] [CrossRef]
- Sanna, A.; Pellegrini, C.; Gross, E.K.U. Combining Eliashberg theory with density functional theory for the accurate prediction of superconducting transition temperatures and gap functions. Phys. Rev. Lett. 2020, 125, 057001. [Google Scholar] [CrossRef] [PubMed]
- Sanna, A.; Flores-Livas, J.A.; Davydov, A.; Profeta, G.; Dewhurst, K.; Sharma, S.; Gross, E.K.U. Ab initio Eliashberg theory: Making genuine predictions of superconducting features. J. Phys. Soc. Jpn. 2018, 87, 041012. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lv, J.; Xie, Y.; Liu, H.; Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 2019, 123, 097001. [Google Scholar] [CrossRef] [Green Version]
- Di Cataldo, S.; Heil, C.; von der Linden, W.; Boeri, L. LaBH8: Towards high- Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B 2021, 104, L020511. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill: New York, NY, USA, 1996; pp. 4–13. [Google Scholar]
- Webb, G.; Marsiglio, F.; Hirsch, J. Superconductivity in the elements, alloys and simple compounds. Phys. C Supercond. 2015, 514, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Resistive transition of high-temperature superconductors. Phys. Rev. Lett. 1988, 61, 1658–1661. [Google Scholar] [CrossRef]
- Hirsch, J.E.; Marsiglio, F. Unusual width of the superconducting transition in a hydride. Nature 2021, 596, E9–E10. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E.; Marsiglio, F. Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Phys. Rev. B 2021, 103, 134505. [Google Scholar] [CrossRef]
- Dogan, M.; Cohen, M.L. Anomalous behavior in high-pressure carbonaceous sulfur hydride. Phys. C Supercond. 2021, 583, 1353851. [Google Scholar] [CrossRef]
- Minkov, V.; Bud’ko, S.; Balakirev, F.; Prakapenka, V.; Chariton, S.; Husband, R.; Liermann, H.; Eremets, M. The Meissner effect in high-temperature hydrogen-rich superconductors under high pressure. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Troyan, I.; Gavriliuk, A.; Rüffer, R.; Chumakov, A.; Mironovich, A.; Lyubutin, I.; Perekalin, D.; Drozdov, A.P.; Eremets, M.I. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science 2016, 351, 1303–1306. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Duan, D.; Sundqvist, B.; Li, X.; Huang, Y.; Yu, H.; Li, F.; Zhou, Q.; Liu, B.; et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Natl. Sci. Rev. 2019, 6, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, J.; Marsiglio, F. Absence of magnetic evidence for superconductivity in hydrides under high pressure. Phys. C Supercond. 2021, 584, 1353866. [Google Scholar] [CrossRef]
- Hirsch, J.; Marsiglio, F. Meissner effect in nonstandard superconductors. Phys. C Supercond. 2021, 587, 1353896. [Google Scholar] [CrossRef]
- Hirsch, J.E. Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure. arXiv 2021, arXiv:2109.08517. [Google Scholar]
- Deng, H.; Zhang, J.; Jeong, M.Y.; Wang, D.; Hu, Q.; Zhang, S.; Sereika, R.; Nakagawa, T.; Chen, B.; Yin, X.; et al. Metallization of quantum material GaTa4Se8 at high pressure. J. Phys. Chem. Lett. 2021, 12, 5601–5607. [Google Scholar] [CrossRef]
- Rini, M. Easing the squeeze on superconductors. Physics 2021, 14, 46. [Google Scholar] [CrossRef]
- Gilman, J.J. Lithium dihydrogen fluoride—An approach to metallic hydrogen. Phys. Rev. Lett. 1971, 26, 546–548. [Google Scholar] [CrossRef]
- Quan, Y.; Pickett, W.E. Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B 2016, 93, 104526. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Tian, Y.; Jiang, B.; Li, X.; Li, H.; Iitaka, T.; Zhong, X.; Xie, Y. Computational discovery of a dynamically stable cubic SH3 -like high-temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B 2020, 101, 174102. [Google Scholar] [CrossRef]
- Cui, W.; Bi, T.; Shi, J.; Li, Y.; Liu, H.; Zurek, E.; Hemley, R.J. Route to high- Tc superconductivity via CH4-intercalated H3S hydride perovskites. Phys. Rev. B 2020, 101, 134504. [Google Scholar] [CrossRef]
- Sano, W.; Koretsune, T.; Tadano, T.; Akashi, R.; Arita, R. Effect of van Hove singularities on high- Tc superconductivity in H3S. Phys. Rev. B 2016, 93, 094525. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, C.; Yi, S.; Kim, K.W.; Kim, J.; Cho, J.-H. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B 2019, 99, 140501. [Google Scholar] [CrossRef] [Green Version]
- Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 2020, 856, 1–78. [Google Scholar] [CrossRef]
- Kim, H.-T. Room-temperature-superconducting Tc driven by electron correlation. Sci. Rep. 2021, 11, 10329. [Google Scholar] [CrossRef]
- Bianconi, A.; Jarlborg, T. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride. EPL Europhys. Lett. 2015, 112, 37001. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yi, S.; Cho, J.-H. Multiband nature of room-temperature superconductivity in LaH10 at high pressure. Phys. Rev. B 2020, 101, 104506. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, B.; Bergara, A. Giant anharmonicity suppresses superconductivity in AlH3 under pressure. Phys. Rev. B 2010, 82, 104504. [Google Scholar] [CrossRef] [Green Version]
- Scheler, T.; Degtyareva, O.; Marqués, M.; Guillaume, C.L.; Proctor, J.; Evans, S.; Gregoryanz, E. Synthesis and properties of platinum hydride. Phys. Rev. B 2011, 83, 214106. [Google Scholar] [CrossRef]
- Errea, I.; Calandra, M.; Mauri, F. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. Phys. Rev. Lett. 2013, 111, 177002. [Google Scholar] [CrossRef]
- Errea, I.; Calandra, M.; Mauri, F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides. Phys. Rev. B 2014, 89, 064302. [Google Scholar] [CrossRef] [Green Version]
- Borinaga, M.; Riego, P.; Leonardo, A.; Calandra, M.; Mauri, F.; Bergara, A.; Errea, I. Anharmonic enhancement of superconductivity in metallic molecular Cmca—4 hydrogen at high pressure: A first-principles study. J. Phys. Condens. Matter 2016, 28, 494001. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Wang, C.; Jeon, H.; Cho, J.-H. Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH10. Phys. Rev. Mater. 2021, 5, 024801. [Google Scholar] [CrossRef]
- Bauer, J.; Han, J.E.; Gunnarsson, O. Quantitative reliability study of the Migdal-Eliashberg theory for strong electron-phonon coupling in superconductors. Phys. Rev. B 2011, 84, 184531. [Google Scholar] [CrossRef] [Green Version]
- Chubukov, A.V.; Abanov, A.; Esterlis, I.; Kivelson, S.A. Eliashberg theory of phonon-mediated superconductivity—When it is valid and how it breaks down. Ann. Phys. 2020, 417, 168190. [Google Scholar] [CrossRef] [Green Version]
- Esterlis, I.; Nosarzewski, B.; Huang, E.W.; Moritz, B.; Devereaux, T.P.; Scalapino, D.J.; Kivelson, S.A. Breakdown of the Migdal-Eliashberg theory: A determinant quantum Monte Carlo study. Phys. Rev. B 2018, 97, 140501(R). [Google Scholar] [CrossRef] [Green Version]
- Souza, T.X.R.; Marsiglio, F. The possible role of van Hove singularities in the high Tc of superconducting H3S. Int. J. Mod. Phys. B 2017, 31, 1745003. [Google Scholar] [CrossRef] [Green Version]
- Ortenzi, L.; Cappelluti, E.; Pietronero, L. Band structure and electron-phonon coupling in H3S: A tight-binding model. Phys. Rev. B 2016, 94, 064507. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, H. Explanation of superfluidity using the Berry connection for many-body wave functions. J. Supercond. Nov. Magn. 2020, 33, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, H. London moment, London’s superpotential, Nambu-Goldstone mode, and Berry connection from many-body wave functions. J. Supercond. Nov. Magn. 2021, 34, 1361–1370. [Google Scholar] [CrossRef]
- Koizumi, H. Superconductivity by Berry connection from many-body wave functions: Revisit to Andreev−Saint-James reflection and Josephson effect. J. Supercond. Nov. Magn. 2021, 34, 2017–2029. [Google Scholar] [CrossRef]
- Hirao, N.; Kawaguchi, S.I.; Hirose, K.; Shimizu, K.; Ohtani, E.; Ohishi, Y. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter Radiat. Extrem. 2020, 5, 018403. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Li, B.; Liu, W.; Smith, J.S.; Björling, A.; Majumdar, A.; Luo, W.; Ahuja, R.; Shu, J.; Wang, J.; et al. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. Matter Radiat. Extrem. 2020, 5, 038401. [Google Scholar] [CrossRef]
- Ji, C.; Li, B.; Liu, W.; Smith, J.S.; Majumdar, A.; Luo, W.; Ahuja, R.; Shu, J.; Wang, J.; Sinogeikin, S.; et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 2019, 573, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Boehler, R.; Guthrie, M.; Molaison, J.; dos Santos, A.; Sinogeikin, S.; Machida, S.; Pradhan, N.; Tulk, C. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press. Res. 2013, 33, 546–554. [Google Scholar] [CrossRef]
- Drozdov, A. Superconductivity in Hydrogen-Rich Materials at High Pressures; Johannes Gutenberg-Universität Mainz: Mainz, Germany, 2016; pp. 67–70. [Google Scholar]
- Li, B.; Ding, Y.; Kim, D.Y.; Wang, L.; Weng, T.-C.; Yang, W.; Yu, Z.; Ji, C.; Wang, J.; Shu, J.; et al. Probing the electronic band gap of solid hydrogen by inelastic X-ray scattering up to 90 GPa. Phys. Rev. Lett. 2021, 126, 036402. [Google Scholar] [CrossRef]
- Meier, T.; Trybel, F.; Khandarkhaeva, S.; Steinle-Neumann, G.; Chariton, S.; Fedotenko, T.; Petitgirard, S.; Hanfland, M.; Glazyrin, K.; Dubrovinskaia, N.; et al. Pressure-induced hydrogen-hydrogen interaction in metallic FeH revealed by NMR. Phys. Rev. X 2019, 9, 031008. [Google Scholar] [CrossRef] [Green Version]
- Capitani, F.; Langerome, B.; Brubach, J.-B.; Roy, P.; Drozdov, A.; Eremets, M.I.; Nicol, E.J.; Carbotte, J.P.; Timusk, T. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys. 2017, 13, 859–863. [Google Scholar] [CrossRef] [Green Version]
- London, F.; London, H. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1935, 149, 71–88. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Landau, L.D. On the theory of superconductivity. J. Exptl. Theoret. Phys. 1950, 20, 546–568. [Google Scholar]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.W. Plasmons, gauge invariance, and mass. Phys. Rev. 1963, 130, 439–442. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132–133. [Google Scholar] [CrossRef]
- Tsuei, C.C.; Kirtley, J.R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 2000, 72, 969–1016. [Google Scholar] [CrossRef]
- Valla, T.; Fedorov, A.V.; Lee, J.; Davis, J.C.; Gu, G.D. The ground state of the pseudogap in cuprate superconductors. Science 2006, 314, 1914–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, C.M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 2006, 73, 155113. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.D.; Huang, Q.; Lynn, J.W.; Ratcliff, W.; Ii, W.R.; Zarestky, J.L.; Mook, H.A.; Chen, G.F.; Luo, J.L.; Wang, N.L.; et al. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems. Nature 2008, 453, 899–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuletić, T.; Auban-Senzier, P.; Pasquier, C.; Tomić, S.; Jérome, D.; Héritier, M.; Bechgaard, K. Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF)2PF6. Eur. Phys. J. B 2002, 25, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Ronning, F.; Yuan, H.Q.; Salamon, M.B.; Movshovich, R.; Sarrao, J.L.; Thompson, J.D. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 2006, 440, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Richter, C.; Mannhart, J.; Ashoori, R.C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 2011, 7, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.-H.; Wu, C. Two-band model for magnetism and superconductivity in nickelates. Phys. Rev. Res. 2019, 1, 032046. [Google Scholar] [CrossRef] [Green Version]
- Wray, L.A.; Xu, S.-Y.; Xia, Y.; Hor, Y.S.; Qian, D.; Fedorov, A.; Lin, H.; Bansil, A.; Cava, R.J.; Hasan, M.Z. Observation of topological order in a superconducting doped topological insulator. Nat. Phys. 2010, 6, 855–859. [Google Scholar] [CrossRef]
- Mao, H.-K.; Chen, B.; Gou, H.; Li, K.; Liu, J.; Wang, L.; Xiao, H.; Yang, W. 2020—Transformative science in the pressure dimension. Matter Radiat. Extrem. 2021, 6, 013001. [Google Scholar] [CrossRef]
Hydrides | Starting Materials | Laser Heating | Electric Resistance | XRD | Isotope Effects | Magnetization | Tc/Pressure | Ref. |
---|---|---|---|---|---|---|---|---|
PHx | Liquid PH₃ | No | R(Tc,onset) = ~5 Ω Zero resistance | — | — | — | 103 K/207 GPa | [12] |
YHx | Y + H2/D2 YH3/YD3 + H2/D2 YH3 + AB | 2000(10) K | R(Tc,onset) = ~0.37 Ω Zero resistance | Yes | Yes | — | 243 K/201 GPa | [13] |
ThHx | Th + AB | 179 GPa, 1.064 nm laser, power: 35–40 W | R(Tc,onset) = ~0.081 Ω Zero resistance | Yes | — | — | 161 K/175 GPa | [15] |
PrHx | Pr + AB | 1650 K@115 GPa | R(Tc,onset) = ~0.9 Ω | Yes | — | — | ~9 K/130 GPa | [16] |
LaYHx | LaY alloys + AB | 2000 K@170–196 GPa | R(Tc,onset) = ~0.392 Ω Zero resistance | Yes | — | — | 253 K/183 GPa | [17] |
LaHx | La + H2 La + D2 | 1500 K@145 GPa | R(Tc,onset) = ~0.95 Ω Zero resistance | Yes | Yes | — | 250 K/170 GPa | [9] |
La + AB | 2000 K@~180 GPa | R(Tc,onset) = ~0.92 Ω Zero resistance | Yes | — | — | 260 K/188 GPa | [10] | |
SnHx | Sn + AB | 1700 K@200 GPa | R(Tc,onset) = ~0.52 Ω, | Yes | — | — | ~70 K/200 GPa | [19] |
CSH | C + S + H2 | 4.0 GPa 532-nm laser light, power: 10–25 mW. | R(Tc,onset) = ~1.66 Ω Zero resistance | Yes | — | Yes | 287.7 K/267 GPa | [11] |
HxS | Liquid H2S or D2S | No | Zero resistance | Yes | Yes | Yes | 203 K/155 GPa a | [8] |
CaHx | Ca foil + AB | 2000 K@160–190 GPa | R(Tc,onset) = ~0.97 Ω Zero resistance | Yes | — | — | 215 K/172 GPa | [21] |
CeHx | Ce + AB Ce + ND3BH3 Ce + ND3BD3 Ce + D2 | 1500 K@90–137 GPa | Zero resistance | Yes | Yes | — | 115 K/95 GPa | [18] |
BaHx | Ba + AB | 1600 K@90 GPa | R(Tc,onset) = ~1.12 Ω | Yes | — | — | 20 K/140 GPa | [20] |
ScHx | Sc + AB | 1500 K | R(Tc,onset) = 0.26 Ω | Yes | — | — | 22.4 K/156 GPa | [22] |
LuHx | Lu + AB | 1500 K/110 GPa | R(Tc,onset) = 0.05 Ω Zero resistance | Yes | — | — | 15 K/128 GPa | [22] |
Hydrides | Methods | Year | Ref. |
---|---|---|---|
HxS | AC magnetic susceptibility measurements | 2015 | [8] |
HxS | nuclear resonant scattering | 2016 | [55] |
HxS | AC magnetic susceptibility measurements | 2019 | [56] |
LaHx | AC magnetic susceptibility measurements | 2020 | [38] |
CSH | AC magnetic susceptibility measurements | 2020 | [11] |
HxS/LaHx | accurate magnetometry measurements | 2021 | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Ding, Y.; Mao, H.-K. Future Study of Dense Superconducting Hydrides at High Pressure. Materials 2021, 14, 7563. https://doi.org/10.3390/ma14247563
Wang D, Ding Y, Mao H-K. Future Study of Dense Superconducting Hydrides at High Pressure. Materials. 2021; 14(24):7563. https://doi.org/10.3390/ma14247563
Chicago/Turabian StyleWang, Dong, Yang Ding, and Ho-Kwang Mao. 2021. "Future Study of Dense Superconducting Hydrides at High Pressure" Materials 14, no. 24: 7563. https://doi.org/10.3390/ma14247563
APA StyleWang, D., Ding, Y., & Mao, H. -K. (2021). Future Study of Dense Superconducting Hydrides at High Pressure. Materials, 14(24), 7563. https://doi.org/10.3390/ma14247563