A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Measuring Apparatus
2.2. Chemicals
2.3. Pharmaceutical Sample Preparation
2.4. Urine Sample Preparation
2.5. Standard Procedure of Measurements
3. Results and Discussion
3.1. Voltammetric Characterization of Glassy Carbon Electrode Modified with Carbon Black
3.2. Influence of Modifier Layer Volume on Propranolol Peak
3.3. Influence of Preconcentration Time and Potential on Propranolol Peak
3.4. Influence of Supporting Electrolyte on Propranolol Peak
3.5. Influence of Potential Interferents on Propranolol Peak
3.6. Calibration and Real Samples Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bylund, D.B. Propranolol. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–8. ISBN 9780128012383. [Google Scholar]
- El-Shabrawi, M.; Hassanin, F. Propranolol Safety Profile in Children. Curr. Drug Saf. 2011, 6, 259–266. [Google Scholar] [CrossRef]
- Al-Majed, A.A.; Bakheit, A.H.H.; Abdel Aziz, H.A.; Alajmi, F.M.; AlRabiah, H. Propranolol. Profiles Drug Subst. Excip. Relat. Methodol. 2017, 42, 287–338. [Google Scholar] [CrossRef] [PubMed]
- El-Ries, M.A.; Abou Attia, F.M.; Ibrahim, S.A. AAS and spectrophotometric determination of propranolol HCl and metoprolol tartrate. J. Pharm. Biomed. Anal. 2000, 24, 179–187. [Google Scholar] [CrossRef]
- El-Emam, A.A.; Belal, F.F.; Moustafa, M.A.; El-Ashry, S.M.; El-Sherbiny, D.T.; Hansen, S.H. Spectrophotometric determination of propranolol in formulations via oxidative coupling with 3-methylbenzothiazoline-2-one hydrazone. Farmaco 2003, 58, 1179–1186. [Google Scholar] [CrossRef]
- El-Abasawi, N.M.; Attia, K.A.M.; Abo-serie, A.A.M.; Morshedy, S.; Abdel-Fattah, A. Simultaneous determination of rosuvastatin and propranolol in their binary mixture by synchronous spectrofluorimetry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 322–330. [Google Scholar] [CrossRef]
- Madrakian, T.; Afkhami, A.; Mohammadnejad, M. Simultaneous spectrofluorimetric determination of levodopa and propranolol in urine using feed-forward neural networks assisted by principal component analysis. Talanta 2009, 78, 1051–1055. [Google Scholar] [CrossRef]
- Imam, S.S.; Ahad, A.; Aqil, M.; Sultana, Y.; Ali, A. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation. J. Pharm. Bioallied Sci. 2013, 5, 61–65. [Google Scholar] [CrossRef]
- Salman, S.A.B.; Sulaiman, S.A.; Ismail, Z.; Gan, S.H. Quantitative determination of propranolol by ultraviolet HPLC in human plasma. Toxicol. Mech. Methods 2010, 20, 137–142. [Google Scholar] [CrossRef]
- Kim, H.K.; Hong, J.H.; Park, M.S.; Kang, J.S.; Lee, M.H. Determination of propranolol concentration in small volume of rat plasma by HPLC with fluorometric detection. Biomed. Chromatogr. 2001, 15, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Micke, G.A.; Costa, A.C.O.; Heller, M.; Barcellos, M.; Piovezan, M.; Caon, T.; de Oliveira, M.A.L. Development of a fast capillary electrophoresis method for the determination of propranolol-Total analysis time reduction strategies. J. Chromatogr. A 2009, 1216, 7957–7961. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Zeng, Z. Solid-phase microextraction coupled with capillary electrophoresis for the determination of propranolol enantiomers in urine using a sol-gel derived calix[4]arene fiber. J. Chromatogr. A 2006, 1104, 359–365. [Google Scholar] [CrossRef]
- Oliveira, G.G.; Azzi, D.C.; Vicentini, F.C.; Sartori, E.R.; Fatibello-Filho, O. Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film. J. Electroanal. Chem. 2013, 708, 73–79. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Fatibello-Filho, O. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. J. Electroanal. Chem. 2018, 824, 1–8. [Google Scholar] [CrossRef]
- Gupta, P.; Yadav, S.K.; Agrawal, B.; Goyal, R.N. A novel graphene and conductive polymer modified pyrolytic graphite sensor for determination of propranolol in biological fluids. Sens. Actuators B Chem. 2014, 204, 791–798. [Google Scholar] [CrossRef]
- Dehnavi, A.; Soleymanpour, A. Titanium Dioxide/Multi-walled Carbon Nanotubes Composite Modified Pencil Graphite Sensor for Sensitive Voltammetric Determination of Propranolol in Real Samples. Electroanalysis 2021, 33, 355–364. [Google Scholar] [CrossRef]
- Broli, N.; Vasjari, M.; Vallja, L.; Duka, S.; Shehu, A.; Cenolli, S. Electrochemical determination of atenolol and propranolol using a carbon paste sensor modified with natural ilmenite. Open Chem. 2021, 19, 875–883. [Google Scholar] [CrossRef]
- Gaichore, R.R.; Srivastava, A.K. Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 195–206. [Google Scholar] [CrossRef]
- Sartori, E.R.; Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode. Talanta 2010, 81, 1418–1424. [Google Scholar] [CrossRef]
- Khairy, M.; Khorshed, A.A. Simultaneous voltammetric determination of two binary mixtures containing propranolol in pharmaceutical tablets and urine samples. Microchem. J. 2020, 159, 105484. [Google Scholar] [CrossRef]
- Khorshed, A.A.; Khairy, M.; Banks, C.E. Electrochemical determination of antihypertensive drugs by employing costless and portable unmodified screen-printed electrodes. Talanta 2019, 198, 447–456. [Google Scholar] [CrossRef]
- Yin, H.; Ma, Q.; Zhou, Y.; Ai, S.; Zhu, L. Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim. Acta 2010, 55, 7102–7108. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, S.-F. Electrocatalytic Oxidation and Direct Determination of L-Tyrosine by Square Wave Voltammetry at Multi-Wall Carbon Nanotubes Modified Glassy Carbon Electrodes. Microchim. Acta 2005, 151, 47–52. [Google Scholar] [CrossRef]
- Maringa, A.; Mugadza, T.; Antunes, E.; Nyokong, T. Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J. Electroanal. Chem. 2013, 700, 86–92. [Google Scholar] [CrossRef]
- Abollino, O.; Giacomino, A.; Malandrino, M.; Piscionieri, G.; Mentasti, E. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis 2008, 20, 75–83. [Google Scholar] [CrossRef]
- Smajdor, J.; Paczosa–Bator, B.; Piech, R. Voltammetric Electrode Based on Nafion and Poly(2,3–dihydrothieno–1,4–dioxin)–poly(styrenesulfonate) Film for Fast and High Sensitive Determination of Metamizole. J. Electrochem. Soc. 2016, 163, B146–B152. [Google Scholar] [CrossRef]
- Dong, Y.; Ding, Y.; Zhou, Y.; Chen, J.; Wang, C. Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode. J. Electroanal. Chem. 2014, 717–718, 206–212. [Google Scholar] [CrossRef]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Lourencao, B.C.; Silva, T.A.; Fatibello-Filho, O.; Swain, G.M. Voltammetric Studies of Propranolol and Hydrochlorothiazide Oxidation in Standard and Synthetic Biological Fluids Using a Nitrogen-Containing Tetrahedral Amorphous Carbon (ta-C:N) Electrode. Electrochim. Acta 2014, 143, 398–406. [Google Scholar] [CrossRef]
- El-Ries, M.A.; Abou-Sekkina, M.M.; Wassel, A.A. Polarographic determination of propranolol in pharmaceutical formulation. J. Pharm. Biomed. Anal. 2002, 30, 837–842. [Google Scholar] [CrossRef]
- Pérez Ruiz, T.; Martínez-Lozano, C.; Tomás, V.; Carpena, J. Simultaneous determination of propranolol and pindolol by synchronous spectrofluorimetry. Talanta 1998, 45, 969–976. [Google Scholar] [CrossRef]
- Tabrizi, A.B. A simple spectrofluorimetric method for determination of piroxicam and propranolol in pharmaceutical preparations. J. Food Drug Anal. 2007, 15, 242–248. [Google Scholar] [CrossRef]
- Partani, P.; Modhave, Y.; Gurule, S.; Khuroo, A.; Monif, T. Simultaneous determination of propranolol and 4-hydroxy propranolol in human plasma by solid phase extraction and liquid chromatography/electrospray tandem mass spectrometry. J. Pharm. Biomed. Anal. 2009, 50, 966–976. [Google Scholar] [CrossRef]
- Townshend, A.; Murillo Pulgarín, J.A.; Alañón Pardo, M.T. Flow injection-chemiluminescence determination of propranolol in pharmaceutical preparations. Anal. Chim. Acta 2003, 488, 81–88. [Google Scholar] [CrossRef]
- Tsogas, G.Z.; Stergiou, D.V.; Vlessidis, A.G.; Evmiridis, N.P. Development of a sensitive flow injection-chemiluminescence detection method for the indirect determination of propranolol. Anal. Chim. Acta 2005, 541, 149–155. [Google Scholar] [CrossRef]
- Dos Santos, S.X.; Cavalheiro, É.T.G.; Brett, C.M.A. Analytical potentialities of carbon nanotube/silicone rubber composite electrodes: Determination of propranolol. Electroanalysis 2010, 22, 2776–2783. [Google Scholar] [CrossRef]
- Shadjou, N.; Hasanzadeh, M.; Saghatforoush, L.; Mehdizadeh, R.; Jouyban, A. Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles. Electrochim. Acta 2011, 58, 336–347. [Google Scholar] [CrossRef]
Interferent\Concentration of Interferent | Peak Current Value, µA | Signal Change, % | ||||
---|---|---|---|---|---|---|
0 µmol L−1 | 5 µmol L−1 | 20 µmol L−1 | 50 µmol L−1 | 2.5 ppm | ||
Mg (II) | 5.59 | - | - | 6.99 | - | +25 |
Ca (II) | 5.50 | - | - | 5.87 | - | +7 |
Na (I) | 5.52 | - | - | 5.74 | - | +4 |
K (I) | 5.56 | - | - | 5.90 | - | +6 |
Cu (II) | 5.57 | 4.35 | - | - | - | −22 |
Pb (II) | 5.55 | 5.77 | - | - | - | +4 |
Cd (II) | 5.59 | 4.75 | - | - | - | −15 |
Zn (II) | 5.63 | 5.35 | - | - | - | −6 |
Mo (IV) | 5.49 | 4.77 | - | - | - | −13 |
Mn (II) | 5.09 | 5.01 | - | - | - | −2 |
Citric acid | 5.58 | - | - | 5.40 | - | −3 |
Lactose monohydrate | 5.56 | - | 5.40 | - | - | −3 |
Starch | 5.49 | - | 5.43 | - | - | −1 |
Magnesium stearate | 5.56 | - | 5.56 | - | - | 0 |
Talc | 5.58 | - | 5.47 | - | - | −2 |
Cellulose | 5.54 | - | 5.43 | - | - | −2 |
Titanium dioxide | 5.62 | - | 5.63 | - | - | 0 |
Glucose | 5.63 | 5.29 | - | - | - | −6 |
Caffeine | 5.61 | - | 5.22 | - | - | −7 |
Ascorbic acid | 5.60 | - | 5.43 | - | - | −3 |
Uric acid | 5.57 | - | 5.46 | - | - | −2 |
Acetaminophen | 5.58 | - | 5.36 | - | - | −4 |
Triton X-100 | 5.79 | - | - | - | 5.18 | −11 |
Method | Detection Limit | Source |
---|---|---|
Spectrophotometry | 0.34 µmol L−1 | [5] |
RP-HPLC 1 | 1.04 µmol L−1 | [8] |
SWV (GC/MWCNTs) 2 | 26 nmol L−1 | [13] |
SWV (AgNP-IL-FG-NF/GCE) 3 | 17 nmol L−1 | [14] |
SWV (EPPG/Graphen/CP) 4 | 20 nmol L−1 | [15] |
CV (TiO2/MWCNT/PGE) 5 | 21 nmol L−1 | [16] |
SWV (BDDE) 6 | 0.18 µmol L−1 | [19] |
DPV (SPE) 7 | 13 nmol L−1 | [20] |
SWV (C:N electrode) 8 | 0.75 µmol L−1 | [29] |
Polarography | 5 nmol L−1 | [30] |
Spectrofluorimetry | 11.9 nmol L−1 | [31] |
Spectrofluorimetry | 30.8 nmol L−1 | [32] |
LC/MS 9 | 0.19 nmol L−1 | [33] |
Chemiluminescence | 3.4 µmol L−1 | [34] |
Chemiluminescence | 0.14 µmol L−1 | [35] |
SWV (MWCNT/SR) 10 | 78 nmol L−1 | [36] |
CV (CPE/CuO) 11 | 2.91 µmol L−1 | [37] |
DPV (GC/CB) | 7 nmol L−1 | This work |
Sample | PROP Added, mg/Tablet | PROP Found ± mg/Tablet | Recovery, % |
---|---|---|---|
Propranolol WZF | 0 | 11.5 ± 0.2 | - |
15 | 13.8 ± 0.3 | 92 | |
30 | 30.9 ± 0.2 | 100 | |
45 | 44.9 ± 0.2 | 100 | |
Propranolol Accord | 0 | 11.7 ± 1.2 | - |
15 | 15.4 ± 0.3 | 102 | |
30 | 28.9 ± 0.5 | 96 | |
45 | 45.6 ± 0.3 | 101 | |
Sample | PROP added, µg/mL | PROP found± µg/mL | Recovery, % |
Urine diluted 100× | 0 | Not detected | - |
6 | 6.36 ± 0.9 | 106 | |
12 | 11.7 ± 0.8 | 97 | |
18 | 18.5 ± 0.5 | 103 | |
24 | 23.8 ± 0.4 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargiel, I.; Smajdor, J.; Górska, A.; Paczosa-Bator, B.; Piech, R. A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Materials 2021, 14, 7582. https://doi.org/10.3390/ma14247582
Bargiel I, Smajdor J, Górska A, Paczosa-Bator B, Piech R. A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Materials. 2021; 14(24):7582. https://doi.org/10.3390/ma14247582
Chicago/Turabian StyleBargiel, Izabela, Joanna Smajdor, Anna Górska, Beata Paczosa-Bator, and Robert Piech. 2021. "A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles" Materials 14, no. 24: 7582. https://doi.org/10.3390/ma14247582
APA StyleBargiel, I., Smajdor, J., Górska, A., Paczosa-Bator, B., & Piech, R. (2021). A Novel Voltametric Measurements of Beta Blocker Drug Propranolol on Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Materials, 14(24), 7582. https://doi.org/10.3390/ma14247582