Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete
Abstract
:1. Introduction
2. Description of the Study Area and Material
3. Experimental Program
3.1. Chemical Analysis of Portland Cement
3.2. Mortar Bar Expansion by the Accelerated Method
3.3. Concrete Prism Expansion by Long-Term and Accelerated Methods
3.4. Microstructure Analysis by SEM Scanning Electron Microscopy
4. Results and Discussion
4.1. Petrographic Analysis of Quartzites
4.2. Expansion in Mortar Bars by the Accelerated Method and SEM Analysis
4.3. Expansion in Concrete Prisms by the Long-Term Method
4.4. Expansion in Concrete Prisms by the Accelerated Method and SEM Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiodi Filho, C. O setor brasileiro de rochas ornamentais. In Produção Brasileira de Lavra; ABIROCHAS: Brasilia, Brazil, 2021. (In Portuguese) [Google Scholar]
- FEAM Guia Técnico Ambiental da Indústria de Rochas Ornamentais. Fundação Estadual do Meio Ambiente, Federação das Indústrias do Estado de Minas Gerais; FEAM: Belo Horizonte, Brazil; FIEMG: Belo Horizonte, Brazil, 2015. (In Portuguese) [Google Scholar]
- Solouki, A.; Viscomi, G.; Tataranni, P.; Sangiorgi, C. Preliminary evaluation of cement mortars containing waste sit optimized with the design of experiments method. Materials 2021, 14, 528. [Google Scholar] [CrossRef]
- Yang, R.; Yu, R.; Shui, Z.; Gao, X.; Han, J.; Lin, G.; He, Y. Environmental and economical friendly ultra-high performance-concrete incorporating appropriate quarry-stone powders. J. Clean. Prod. 2020, 260, 121112. [Google Scholar] [CrossRef]
- González, J.S.; Boadella, I.L.; Gayarre, F.L.; Pérez, C.L.; López, M.S.; Stochino, F. Use of mining waste to produce ultra-high-performance fibre-reinforced concrete. Materials 2020, 13, 2457. [Google Scholar] [CrossRef]
- Rana, A.; Kalla, P.; Verma, H.K.; Mohnot, J.K. Recycling of dimensional stone waste in concrete: A review. J. Clean. Prod. 2016, 135, 312–331. [Google Scholar] [CrossRef]
- Medina, G.; Del Bosque, I.S.; Frías, M.; De Rojas, M.S.; Medina, C. Granite quarry waste as a future eco-efficient supplementary cementitious material. J. Clean. Prod. 2017, 148, 467–476. [Google Scholar] [CrossRef]
- Oliveira, T.; Ribeiro, R.P.; Moreiras, S.T.F. Characterization of granite cutting sludge for geotechnical purposes. Sci. Eng. J. 2017, 25, 51–57. [Google Scholar]
- Luodes, H.; Kauppila, P.M.; Luodes, N.; Aatos, S.; Kallioinen, J.; Luukkanen, S.; Aalto, J. Characteristics and the environmental acceptability of the natural stone quarrying waste rocks. Bull. Eng. Geol. Environ. 2012, 71, 257–261. [Google Scholar] [CrossRef]
- Reis, M.J.; Collares, E.G.; Reis, F.M.D. Technological assessment of tailings from quartzite mining sites in Alpinópolis (Minas Gerais–Brazil) as aggregates in concrete block paving (CBP). Bull. Eng. Geol. Environ. 2018, 77, 1623–1637. [Google Scholar] [CrossRef]
- Barros, S.V.A.; Marciano, J.E.A.; Ferreira, H.C.; Menezes, R.R.; Neves, G.A. Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior. Constr. Build. Mater. 2016, 188, 344–351. [Google Scholar] [CrossRef]
- Collares, E.G.; Francklin, I., Jr.; Motta, L.A.C. Evaluation of the aggregate produced from wastes of quartzite mining sites to use in concrete. Soils Rocks 2012, 35, 251–266. [Google Scholar]
- Almada, B.S.; De Souza Melo, L.; Dutra, J.B.; Bubani, L.C.; Silva, G.J.B.; dos Santos, W.J.; Aguilar, M.T.P. Influence of the heterogeneity of waste from wet processing of ornamental stones on the performance of Portland cement composites. Constr. Build. Mater. 2020, 262, 120036. [Google Scholar] [CrossRef]
- Francklin, I., Jr.; Ribeiro, R.P.; Da Silva, M.H.; Aureliano, F.S.; Costa, A.A.; Garcia, V.L. Study of reactive powder concrete using quartzite tailings from the state of Minas Gerais-Brazil. Procedia Manufact. 2019, 38, 1758–1765. [Google Scholar] [CrossRef]
- Rangaraju, P.R.; Li, Z.; Afshinnia, K. Influence of Alkali Content of Cement on Mechanical and Durability Performance of UHPC. In Proceedings of the 15th International Conference on Alkali-Aggregate Reaction—ICAAR, São Paulo, Brazil, 3–7 July 2016. [Google Scholar]
- Metha, P.K.; Monteiro, P.J.M. Concreto-Microestrutura, Propriedades e Materiais, 2nd ed.; Ibracon: São Paulo, Brazil, 2014; (In Portuguese). ISBN 978-85-98576-21-3. [Google Scholar]
- Strack, C.M.; Barnes, E.; Ramsey, M.A.; Williams, R.K.; Klaus, K.L.; Moser, R.D. Impact of aggregate mineralogy and exposure solution on alkali-silica reaction product composition and structure within accelerated test conditions. Constr. Build. Mater. 2020, 240, 117929. [Google Scholar] [CrossRef]
- Šachlová, Š.; Kuchařová, A.; Pertold, Z.; Pertold, Z.; Přikryl, R.; Fridrichová, M. Quantitative assessment of alkali silica reaction potential of quartz-rich aggregates: Comparison of chemical test and accelerated mortar bar test improved by SEM-PIA. Bull. Eng. Geol. Environ. 2017, 76, 133–144. [Google Scholar] [CrossRef]
- Tiecher, F.; Gomes, M.E.; Dal Molin, D.C.; Hasparyk, N.P.; Monteiro, P.J. Relationship between degree of deformation in quartz and silica dissolution for the development of alkali-silica reaction in concrete. Materials 2017, 10, 1022. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, W.M.G. Utilization of Remnant of the Extraction of a Flagstone (“Pedra Mineira”) as Crushed Coarse Aggregate in Concrete. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2003. Available online: http://repositorio.unicamp.br/jspui/handle/REPOSIP/258626 (accessed on 1 June 2020). (In Portuguese).
- ASTM (American Society for Testing and Materials). ASTM C1260. Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method); ASTM International: West Conshohocken, PA, USA, 1994. [Google Scholar]
- Hasparyk, N.P.; Monteiro, P.J.M.; Dal Molin, D.C.C. Investigation of mechanical properties of mass concrete affected by alkali-aggregate reaction. J. Mater. Civ. Eng. 2009, 21, 294–297. [Google Scholar] [CrossRef]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15577-3 Aggregates-Alkali-aggregate reactivity. In Part 3: Petrographic Analysis for Evaluation of the Potential Reactivity of Aggregates with Alkali Compounds from Concrete; ABNT: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- ASTM (American Society for Testing and Materials). ASTM C114 Standard Test Methods for Chemical Analysis of Hydraulic Cement; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15577-4 Aggregates—Alkali-aggregate reactivity. In Part 4: Determination of Expansion on Mortar Bars by Accelerated Mortar-Bar Method; ABNT: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15577-6 Aggregates—Alkali-aggregate reactivity. In Part 6: Determination of Expansion on Concrete Prisms; ABNT: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15577-7 Aggregates—Alkali-aggregate reactivity. In Part 7: Determination of Expansion on Concrete Prism by Accelerated Method; ABNT: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- Cassiani, J.; Dugarte, M.; Martinez-Arguelles, G. Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Constr. Build. Mater. 2021, 275, 122158. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghiasvand, E.; Nili, M. Relation between mechanical properties of concrete and alkali-silica reaction (ASR): A review. Constr. Build. Mater. 2020, 258, 119567. [Google Scholar] [CrossRef]
- Wallau, W.; Pirskawetz, S.; Voland, K.; Meng, B. Continuous expansion measurement in accelerated concrete prism testing for verifying ASR-expansion models. Mater. Struct. 2018, 51, 79. [Google Scholar] [CrossRef]
- Sanches, L.; Kuperman, S.C.; Helene, P. Using the accelerated Brazilian concrete prism test (ABCPT) to evaluate alkali aggregate reaction (AAR). IBRACON Struct. Mater. J. 2011, 4, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Park, S.; Lothenbach, B.; Leemann, A. Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C. Cem. Concr. Res. 2020, 137, 106213. [Google Scholar] [CrossRef]
- Tiecher, F.; Venquiaruto, S.D.; Silva, L.B.; Dal Molin, D.C.; Gomes, M.B. The reactivity of the aggregates from southern region of Brazil. IBRACON Mat. J. 2007, 3, 73–81. [Google Scholar]
- Tapas, M.J.; Sofia, L.; Vessalas, K.; Thomas, P.; Sirivivatnanon, V.; Scrivener, K. Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method. Cem Concr. Res. 2021, 142, 106353. [Google Scholar] [CrossRef]
- ABNT (Associação Brasileira de Normas Técnicas). NBR 15577-1 Aggregates—Alkali-aggregate reactivity. In Part 1: Guide for the Evaluation of Potential Reactivity of Aggregates and Preventive Measures for Its Use in Concrete; ABNT: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- Chiodi Filho, C.; Artur, A.C.; Rodrigues, E.P. Aspectos geológicos, petrográficos e químicos de interesse para o aproveitamento econômico dos quartzitos foliados de São Thomé das Letras—Minas Gerais. Geociências 2005, 24, 163–171. (In Portuguese) [Google Scholar]
- Yuksel, C.; Ahari, R.S.; Ahari, B.A.; Ramyar, K. Evaluation of three test methods for determining the alkali–silica reactivity of glass aggregate. Cem. Concr. Compos. 2013, 38, 57–64. [Google Scholar] [CrossRef]
- Fournier, B.; Chevrier, R.; DeGrosbois, M.; Lisella, R.; Folliard, K.; Ideker, J.; Baxter, S. The accelerated concrete prism test (60 °C): Variability of the test method and proposed expansion limits. In Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing, China, 15–19 October 2004; pp. 314–323. [Google Scholar]
- Oey, T.; La Plante, E.C.; Falzone, G.; Hsiao, Y.H.; Wada, A.; Monfardini, L.; Bauchy, M.; Bullard, J.W.; Sant, G. Calcium nitrate: A chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali-silica reaction. Cem. Concr. Compos. 2020, 110, 103592. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, X.; Kim, M.; Zi, G. Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Constr. Build. Mater. 2021, 271, 121809. [Google Scholar] [CrossRef]
- Leemann, A.; Lörtscher, L.; Bernard, L.; Le Sauot, G.; Lothenbach, B.; Espinosa-Marzal, R.M. Mitigation of ASR by the use of LiNO3-characterization of the reaction products. Cem. Concr. Res. 2014, 59, 73–86. [Google Scholar] [CrossRef]
- Tremblay, C.; Bérubé, M.A.; Fournier, B.; Thomas, M.D.; Folliard, K.J. Experimental investigation of the mechanisms by which LiNO3 is effective against ASR. Cem. Concr. Res. 2010, 40, 583–597. [Google Scholar] [CrossRef]
- Kobayashi, K.; Takagi, Y. Penetration of pressure-injected lithium nitrite in concrete and ASR mitigating effect. Cem. Concr. Compos. 2020, 114, 1–122. [Google Scholar] [CrossRef]
- Ekolu, S.; Rakgosi, G.; Hooton, D. Long-term mitigating effect of lithium nitrate on delayed ettringite formation and ASR in concrete–Microscopic analysis. Mater. Charact. 2017, 133, 165–175. [Google Scholar] [CrossRef]
Region (MG) | Samples | Material Description |
---|---|---|
São Thomé das Letras | STL0 | Industrialized Quartzite. |
STL1 | Friable, foliated quartzite, with lower apparent mechanical strength. | |
STL2 | Quartzite with incipient foliation and medium apparent mechanical strength; widely used as a “cladding stone”. | |
STL3 | Silicified quartzite, solid structure, non-foliated; does not allow exploitation of slabs. | |
Alpinópolis | ALP1 | Quartzite with incipient foliation and medium apparent mechanical strength; widely used as a “cladding stone”. |
ALP2 | Silicified quartzite, solid structure, non-foliated; does not allow exploitation of slabs. | |
ALP3 | Friable, foliated quartzite, with lower apparent mechanical strength. | |
São Sebastião do Paraíso | DIA | Diabase conventionally used as aggregate for concrete. |
Test | Standard | Basic Description |
---|---|---|
Petrographic analysis | NBR 15577-3 [23] | Optical microscopy in thin sections obtained from representative fragments. |
Cement chemical composition | ASTM C114 [24] | Alkali content (Na and K) and equivalent alkali of HES high early strength Portland cements from the manufacturers Votorantim Cimentos and Lafarge-Holcim, respectively. |
Accelerated Mortar Bar Expansion test | NBR 15577-4 [25] C1260 [21] | Production of 3 bars for each of the 8 samples, with dimensions 25 × 25 × 285 mm3 and mix ratio 1:2.25:0.47. Expansion readings, periodically, for up to 30 days. |
Long-term Concrete Prism Expansion test | NBR 15577-6 [26] | Production of 3 prisms for each of the 8 samples, except for STL0 and ALP1, dimensions 75 × 75 × 285 mm3. Cement consumption 420 kg/m3; w/c water-cement ratio 0.45; 70% coarse aggregate volume; 50% dry mortar content; FM fineness modulus in 2.7. Expansion readings, periodically, up to 365 days. |
Accelerated Concrete Prism Expansion test | NBR 15577-7 [27] | Production of 3 prisms with “standard mix” (STL0 St) and 6 prisms with 100% quartzite (STL0 100%). Dimensions 75 × 75 × 285 mm3; Expansion readings using comparative gauge and a caliper, periodically, for up to 20 weeks. |
Microstructural analysis | Non- Normative | SEM photomicrographs were obtained in a ZEISS LEO 440 equipment. Samples were coated with 6 nm gold and kept in a desiccator until analysis. Finally, samples were subjected to EDS energy-dispersive spectroscopy analysis. |
Type | Manufacturer | Lot/Manufacturing | Equivalent Alkali (Na2Oeq) |
---|---|---|---|
CP V ARI ULTRA | Votorantim | L07133708 | 0.749% |
CP V ULTRA RÁPIDO | Lafarge Holcim | F10/09/19-RBOO E3PZ258 | 0.61% |
Test | Sample | Mixture (kg) |
---|---|---|
Long-term method | STL1 | 1:1.56:2.56:0.45 |
STL2 | 1:1.51:2.61:0.45 | |
STL3 | 1:1.41:2.62:0.45 | |
ALP2 | 1:1.62:2.39:0.45 | |
ALP3 | 1:1.69:2.40:0.45 | |
DIA | 1:1.85:2.76: 0.45 | |
Accelerated method | STL0 St Standard | 1:1.41:2.62: 0.45 |
STL0 100% |
Samples | Mineralogical Composition (%) | |||||
---|---|---|---|---|---|---|
Quartz | Muscovite | Opaque | Rutile | Tourmaline | Zircon | |
STL1 | 94.0 | 5.7 | 0.3 | - | Trace | |
STL2 | 95.0 | 4.6 | 0.4 | Trace | ||
STL3 | 94.5 | 5.0 | 0.5 | Trace | ||
ALP1 | 94.5 | 5.2 | 0.3 | Trace | Trace | |
ALP2 | 94.5 | 5.0 | 0.5 | - | ||
ALP3 | 94.5 | 5.2 | 0.3 | - |
Samples | Mortar Bars Accelerated Method | Concrete Prisms Long-Term Method | Concrete Prisms Accelerated Method | SEM |
---|---|---|---|---|
STL0 | Potentially Reactive | - | Potentially Reactive | Reactive |
STL1 | Potentially Innocuous | Potentially Innocuous | - | - |
STL2 | Potentially Innocuous | Potentially Reactive | - | - |
STL3 | Potentially Innocuous | Potentially Reactive | - | - |
ALP1 | Potentially Innocuous | - | - | - |
ALP2 | Potentially Reactive | Potentially Reactive | - | Reactive |
ALP3 | Potentially Innocuous | Potentially Reactive | - | - |
DIA | Potentially Reactive | Potentially Innocuous | - | Reactive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francklin, I., Jr.; Ribeiro, R.P.; Corrêa, F.A. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete. Materials 2021, 14, 7642. https://doi.org/10.3390/ma14247642
Francklin I Jr., Ribeiro RP, Corrêa FA. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete. Materials. 2021; 14(24):7642. https://doi.org/10.3390/ma14247642
Chicago/Turabian StyleFrancklin, Ivan, Jr., Rogério Pinto Ribeiro, and Fernando Augusto Corrêa. 2021. "Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete" Materials 14, no. 24: 7642. https://doi.org/10.3390/ma14247642
APA StyleFrancklin, I., Jr., Ribeiro, R. P., & Corrêa, F. A. (2021). Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete. Materials, 14(24), 7642. https://doi.org/10.3390/ma14247642