Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
3. Results
3.1. Weight Loss, Morphology, and Topography
3.2. Surface Composition and Wettability
4. Discussion
4.1. Surface Morphology and Topography
4.2. Surface Energy and Composition
4.3. Prospects for NiTi Chemical Etching in Medicine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wadood, A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016, 2016, 4173138. [Google Scholar] [CrossRef] [Green Version]
- Hang, R.; Zhao, F.; Yao, X.; Tang, B.; Chu, P.K. Self-assembled anodization of NiTi alloys for biomedical applications. Appl. Surf. Sci. 2020, 517, 146118. [Google Scholar] [CrossRef]
- Safaei, K.; Abedi, H.; Nematollahi, M.; Kordizadeh, F.; Dabbaghi, H.; Bayati, P.; Javanbakht, R.; Jahadakbar, A.; Elahinia, M.; Poorganji, B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM 2021, 1–16, in press. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T.; Jimbo, R. Implant Surfaces and Their Biological and Clinical Impact; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; p. 182. [Google Scholar]
- John, A.A.; Subramanian, A.P.; Vellayappan, M.V.; Balaji, A.; Jaganathan, S.K.; Mohandas, H.; Paramalinggam, T.; Supriyanto, E.; Yusof, M. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Adv. 2015, 5, 39232–39244. [Google Scholar] [CrossRef]
- Mwangi, J.W.; Nguyen, L.T.; Bui, V.D.; Berger, T.; Zeidler, H.; Schubert, A. Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol. J. Manuf. Process. 2019, 38, 355–369. [Google Scholar] [CrossRef]
- Kong, M.C.; Srinivasu, D.; Axinte, D.; Voice, W.; McGourlay, J.; Hon, B. On geometrical accuracy and integrity of surfaces in multi-mode abrasive waterjet machining of NiTi shape memory alloys. CIRP Ann. 2013, 62, 555–558. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Z.; Yang, C.; Zhang, D.; Tian, Y.; Liu, X. The investigation of mechanical and thermal properties of super-hydrophobic nitinol surfaces fabricated by hybrid methods of laser irradiation and carbon ion implantation. Appl. Surf. Sci. 2020, 527, 146889. [Google Scholar] [CrossRef]
- Ma, L.; Li, W.; Yang, Y.; Ma, Y.; Luo, K.; Jia, B.; Xu, Z.; Yu, Z. Corrosion Behavior of NiTi Alloys Fabricate by Selective Laser Melting Subjected to Femtosecond Laser Shock Peening. Coatings 2021, 11, 1078. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hirano, M.; Komai, S.; Taniho, H.; Ohtsu, N. Cell responses on Ni-free anodized layer of NiTi alloy with various surface morphologies. Appl. Surf. Sci. 2020, 531, 147351. [Google Scholar] [CrossRef]
- Gao, A.; Hang, R.; Bai, L.; Tang, B.; Chu, P.K. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim. Acta 2018, 271, 699–718. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019, 94, 112–131. [Google Scholar] [CrossRef]
- Janeczek, M.; Szymczyk, P.; Dobrzynski, M.; Parulska, O.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Zywicka, B.; Ziolkowski, G.; Marycz, K.; et al. Influence of surface modifications of a nanostructured implant on osseointegration capacity—Preliminary in vivo study. RSC Adv. 2018, 8, 15533–15546. [Google Scholar] [CrossRef] [Green Version]
- Masrouri, M.; Faraji, G.; Pedram, M.S.; Sadrkhah, M. In-vivo study of ultrafine-grained CP-Ti dental implants surface modified by SLActive with excellent wettability. Int. J. Adhes. Adhes. 2020, 102, 102684. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Anderegg, J.; Laab, F.; Thiel, P.A.; Rondelli, G. Surface Conditions of Nitinol Wires, Tubing, and As-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2003, 65, 193–203. [Google Scholar] [CrossRef]
- Khalili, V.; Naji, H. Developing a mechanochemical surface pretreatment to increase the adhesion strength of hydroxyapatite electrophoretic coating on the NiTi alloy as a bone implant. Surf. Coat. Technol. 2020, 397, 125985. [Google Scholar] [CrossRef]
- Pace, B.; Bendavid, A.; Ahsan, M.; Dargusch, M.; Bhatia, V.; Byrnes, J.; Cairney, J. Tuning Ta coating properties through chemical and plasma etching pre-treatment of NiTi wire substrates. Surf. Coat. Technol. 2021, 418, 127214. [Google Scholar] [CrossRef]
- Norouzi, N.; Nouri, Z. The Effect of Two-Stage Acid Treatment on Surface Behavior and Improvement of Bioactivity of Nitinol Alloy. Biointerface Res. Appl. Chem. 2020, 11, 10690–10702. [Google Scholar] [CrossRef]
- Fathyunes, L.; Sheykholeslami, S.O.R. The surface modification of Nitinol superelastic alloy with alkaline-heat treatment and hydroxyapatite/chitosan composite coating for biomedical applications. J. Ultrafine Grained Nanostruct. Mater. 2020, 53, 166–176. [Google Scholar] [CrossRef]
- Rossi, S.; Deflorian, F.; Pegoretti, A.; D’Orazio, D.; Gialanella, S. Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf. Coat. Technol. 2008, 202, 2214–2222. [Google Scholar] [CrossRef]
- Ren, B.; Wan, Y.; Liu, C.; Wang, H.; Yu, M.; Zhang, X.; Huang, Y. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111505. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, D.V.; Smirnov, V.M.; Zemtsova, E.G.; Yudintceva, N.M.; Shevtsov, M.A.; Valiev, R.Z. Enhanced Osseointegrative Properties of Ultra-Fine-Grained Titanium Implants Modified by Chemical Etching and Atomic Layer Deposition. ACS Biomater. Sci. Eng. 2018, 4, 3268–3281. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, D.; Zemtsova, E.; Smirnov, V.; Mitrofanov, I.; Maximov, M.; Yudintceva, N.; Shevtsov, M. The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. Metals 2021, 11, 510. [Google Scholar] [CrossRef]
- Yuan, X.; Kang, Y.; Zuo, J.; Xie, Y.; Ma, L.; Ren, X.; Bian, Z.; Wei, Q.; Zhou, K.; Wang, X.; et al. Micro/nano hierarchical structured titanium treated by NH4OH/H2O2 for enhancing cell response. PLoS ONE 2018, 13, e0196366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borisov, E.; Starikov, K.; Popovich, A.; Tihonovskaya, T. Investigation of the Possibility of Tailoring the Chemical Com-Position of the NiTi Alloy by Selective Laser Melting. Metals 2021, 11, 1470. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Nazarov, D.V.; Zemtsova, E.G.; Solokhin, A.Y.; Valiev, R.Z.; Smirnov, V.M. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching. Nanomaterials 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Wennerberg, A.; Albrektsson, T. Suggested Guidelines for the Topographic Evaluation of Implant Surfaces. Int. J. Oral Maxillofac. Implant. 2000, 15, 331–344. [Google Scholar]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry; John Willey & Sons, Inc.: London, UK; New York, NY, USA, 1972; pp. 807–818. [Google Scholar]
- Tengvall, P.; Lundström, I.; Sjöqvist, L.; Elwing, H.; Bjursten, L.M. Titanium-hydrogen peroxide interaction: Model studies of the influence of the inflammatory response on titanium implants. Biomaterials 1989, 10, 166–175. [Google Scholar] [CrossRef]
- Mühlebach, J.; Müller, K.; Schwarzenbach, G. The peroxo complexes of titanium. Inorg. Chem. 1970, 9, 2381–2390. [Google Scholar] [CrossRef]
- Chu, C.L.; Chung, C.Y.; Chu, P.K. Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide. Mater. Sci. Eng. A 2006, 417, 104–109. [Google Scholar] [CrossRef]
- Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767. [Google Scholar] [CrossRef]
- Lorenzetti, M.; Dogsa, I.; Stosicki, T.; Stopar, D.; Kalin, M.; Kobe, S.; Novak, S. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces 2015, 7, 1644–1651. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- von der Mark, K.; Park, J. Engineering biocompatible implant surfaces. Prog. Mater. Sci. 2013, 58, 327–381. [Google Scholar] [CrossRef]
- Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles--A systematic analytical review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef]
- Veverkova, J.; Bartkova, D.; Weiser, A.; Dlouhy, A.; Babula, P.; Stepka, P.; Pavkova Goldbergova, M. Effect of Ni ion release on the cells in contact with NiTi alloys. Environ. Sci. Pollut. Res. Int. 2020, 27, 7934–7942. [Google Scholar] [CrossRef]
Type of Chemical Etching | Weight before CE, g | Weight after CE, g | Weight Loss, g | Weight Loss, % |
---|---|---|---|---|
HCl/H2SO4-30 min | 1.71360 | 1.71324 | 0.00036 | 0.021 |
HCl/H2SO4-120 min | 1.78714 | 1.78389 | 0.00325 | 0.182 |
H2SO4/H2O2-30 min | 1.52844 | 1.52787 | 0.00057 | 0.037 |
H2SO4/H2O2-120 min | 1.62349 | 1.62267 | 0.00083 | 0.051 |
NH4OH/H2O2-30 min | 1.32186 | 1.32125 | 0.00061 | 0.046 |
NH4OH/H2O2-120 min | 1.43172 | 1.42771 | 0.00402 | 0.281 |
Sample | Ti2p | Ni2p | O1s | C1s | N1s | S2p |
---|---|---|---|---|---|---|
NiTi | 8.29 | 2.01 | 29.75 | 59.95 | - | - |
HCl/H2SO4-30 min | 6.18 | 0.46 | 37.72 | 53.15 | - | 2.49 |
HCl/H2SO4-120 min | 10.20 | 0.47 | 44.89 | 41.70 | - | 2.74 |
H2SO4/H2O2-30 min | 8.83 | 0.27 | 40.62 | 48.56 | - | 1.72 |
H2SO4/H2O2-120 min | 6.56 | 0.52 | 36.50 | 54.79 | - | 1.64 |
NH4OH/H2O2-30 min | 2.05 | 14.24 | 43.95 | 37.68 | 2.08 | - |
NH4OH/H2O2-120 min | 2.95 | 17.89 | 36.92 | 40.47 | 1.76 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarov, D.; Rudakova, A.; Borisov, E.; Popovich, A. Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. Materials 2021, 14, 7683. https://doi.org/10.3390/ma14247683
Nazarov D, Rudakova A, Borisov E, Popovich A. Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. Materials. 2021; 14(24):7683. https://doi.org/10.3390/ma14247683
Chicago/Turabian StyleNazarov, Denis, Aida Rudakova, Evgenii Borisov, and Anatoliy Popovich. 2021. "Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching" Materials 14, no. 24: 7683. https://doi.org/10.3390/ma14247683
APA StyleNazarov, D., Rudakova, A., Borisov, E., & Popovich, A. (2021). Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. Materials, 14(24), 7683. https://doi.org/10.3390/ma14247683