The Characterization of Ukrainian Volcanic Tuffs from the Khmelnytsky Region with the Theoretical Analysis of Their Application in Construction and Environmental Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Origin, Sampling and Preparation
2.2. Physical-Mechanical Analyses of Tuff Samples
2.3. Chemical and Mineralogical Analyses of Volcanic Tuff Samples
3. Results
4. Discussion
4.1. Potential Use of Tuffs in the Building Industry
4.2. Potential Use of Tuffs in Environmental Technology
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Germinario, L.; Török, Á. Surface Weathering of Tuffs: Compositional and Microstructural Changes in the Building Stones of the Medieval Castles of Hungary. Minerals 2020, 10, 376. [Google Scholar] [CrossRef]
- Yüksek, S. Mechanical Properties of Some Building Stones from Volcanic Deposits of Mount Erciyes (Turkey). Mater. Constr. 2019, 69, 187. [Google Scholar] [CrossRef] [Green Version]
- Wedekind, W.; López-Doncel, R.; Dohrmann, R.; Kocher, M.; Siegesmund, S. Weathering of Volcanic Tuff Rocks Caused by Moisture Expansion. Environ. Earth Sci. 2012, 69, 1203–1224. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Noguchi, T.; Degée, H.; Zhao, J.; Kitagaki, R. Volcano-Related Materials in Concretes: A Comprehensive Review. Environ. Sci. Pollut. Res. 2016, 23, 7220–7243. [Google Scholar] [CrossRef] [PubMed]
- Ezziane, K.; Bougara, A.; Kadri, A.; Khelafi, H.; Kadri, E. Compressive Strength of Mortar Containing Natural Pozzolan under Various Curing Temperature. Cem. Concr. Compos. 2007, 29, 587–593. [Google Scholar] [CrossRef]
- Al-Zou’by, J.; Al-Zboon, K.K. Effect of Volcanic Tuff on the Characteristics of Cement Mortar. Cerâmica 2014, 60, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Turanli, L.; Uzal, B.; Bektas, F. Effect of Large Amounts of Natural Pozzolan Addition on Properties of Blended Cements. Cem. Concr. Res. 2005, 35, 1106–1111. [Google Scholar] [CrossRef]
- Hunyak, O.; Sobol, K.; Markiv, T.; Bidos, V. The Effect of Natural Pozzolans on Properties of Vibropressed Interlocking Concrete Blocks in Different Curing Conditions. Prod. Eng. Arch. 2019, 22, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Ababneh, A.; Matalkah, F.; Aqel, R. Synthesis of Kaolin-Based Alkali-Activated Cement: Carbon Footprint, Cost and Energy Assessment. J. Mater. Res. Technol. 2020, 9, 8367–8378. [Google Scholar] [CrossRef]
- Çavdar, A.; Yetgin, Ş. Availability of Tuffs from Northeast of Turkey as Natural Pozzolan on Cement, Some Chemical and Mechanical Relationships. Constr. Build. Mater. 2007, 21, 2066–2071. [Google Scholar] [CrossRef]
- García-González, C.; Yepes, J.; Franesqui, M.A. Geomechanical Characterization of Volcanic Aggregates for Paving Construction Applications and Correlation with the Rock Properties. Transp. Geotech. 2020, 24, 100383. [Google Scholar] [CrossRef]
- Sarireh, M. Testing the Use of Volcanic Tuff in Base and Sub-Base Pavement Construction in Jordan. Int. J. Constr. Manag. 2020, 1–14. [Google Scholar] [CrossRef]
- Melnychuk, V.; Melnychuk, G.; Polishchuk, A. Application of Zeolite-Smectite Tuffs of Volyn-Podillya in Ecologically Clean Production. Notes Ukr. Mineral. Partnersh. 2016, 13, 83–87. [Google Scholar]
- Okogbue, C.O.; Aghamelu, O.P. Performance of Pyroclastic Rocks from Abakaliki Metropolis (Southeastern Nigeria) in Road Construction Projects. Bull. Eng. Geol. Environ. 2013, 72, 433–446. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Bhattacharyya, K.G. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of Dyes Using Different Types of Clay: A Review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-Silica Zeolites for Adsorption of Organic Micro-Pollutants in Water Treatment: A Review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Tangviroon, P.; Noto, K.; Igarashi, T.; Kawashima, T.; Ito, M.; Sato, T.; Mufalo, W.; Chirwa, M.; Nyambe, I.; Nakata, H.; et al. Immobilization of Lead and Zinc Leached from Mining Residual Materials in Kabwe, Zambia: Possibility of Chemical Immobilization by Dolomite, Calcined Dolomite, and Magnesium Oxide. Minerals 2020, 10, 763. [Google Scholar] [CrossRef]
- Alshameri, A.; Xinghu, W.; Dawood, A.; Assabri, A.; Xin, C.; Yan, C. Characterization of Yemeni Natural Zeolite (Al-Ahyuq Area) and Its Environment Applications: A Review. J. Ecol. Eng. 2019, 20, 157–166. [Google Scholar] [CrossRef]
- Wazwaz, A.; Al-Salaymeh, A.; Khan, M.S. Removing Heavy Metals Through Different Types of Soils and Marble Powder Found in Oman. J. Ecol. Eng. 2019, 20, 136–142. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Ilmi, M.M. Indonesia Natural Mineral for Heavy Metal Adsorption: A Review. J. Environ. Sci. Sustain. Dev. 2019, 2, 3. [Google Scholar] [CrossRef]
- Puszkarewicz, A.; Kaleta, J. Adsorption of Chromium(VI) on Raw and Modified Carpathian Diatomite. J. Ecol. Eng. 2019, 20, 11–17. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Tsikouras, B.; Lampropoulou, P.; Kalaitzidis, S.; Hatzipanagiotou, K.; Lambrakis, N.; Christopoulou, M.A. An Experimental Study for the Remediation of Industrial Waste Water Using a Combination of Low Cost Mineral Raw Materials. Minerals 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.-J.; Wu, H.-N.; Chai, J.-C.; Arulrajah, A. State-Of-The-Art Review of Geosynthetic Clay Liners. Sustainability 2017, 9, 2110. [Google Scholar] [CrossRef] [Green Version]
- Fronczyk, J. Properties of Reactive Materials for Application in Runoff Water Treatment Systems. J. Ecol. Eng. 2020, 21, 185–197. [Google Scholar] [CrossRef]
- Fronczyk, J.; Garbulewski, K. Evaluation of Zeolite-Sand Mixtures as Reactive Materials Protecting Groundwater at Waste Disposal Sites. J. Environ. Sci. 2013, 25, 1764–1772. [Google Scholar] [CrossRef]
- Srinivasan, R. Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water. Adv. Mater. Sci. Eng. 2011, 2011, 872531. [Google Scholar] [CrossRef] [Green Version]
- Undabeytia, T.; Shuali, U.; Nir, S.; Rubin, B. Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. Minerals 2020, 11, 9. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Belousov, P.; Semenkova, A.; Egorova, T.; Romanchuk, A.; Zakusin, S.; Dorzhieva, O.; Tyupina, E.; Izosimova, Y.; Tolpeshta, I.; Chernov, M.; et al. Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite and Diatomite. Minerals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Franus, M.; Bandura, L.; Madej, J. Mono and Poly-Cationic Adsorption of Heavy Metals Using Natural Glauconite. Minerals 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- McRae, S.G.; Lambert, J.L.M. A Study of Some Glauconites from Cretaceous and Tertiary Formations in South-East England. Clay Miner. 1968, 7, 431–440. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Melnychuk, G.; Mazur, Ł.; Podlasek, A.; Vaverková, M.; Koda, E. Using Local Mineral Materials for the Rehabilitation of the Ustya River—A Case Study. Desalination Water Treat. 2021, 232, 346–356. [Google Scholar] [CrossRef]
- Rhodes, C.J. Properties and Applications of Zeolites. Sci. Prog. 2010, 93, 223–284. [Google Scholar] [CrossRef] [PubMed]
- Voronina, A.V.; Kulyaeva, I.O.; Gupta, D.K. Determination of the Parameters of Selective 137Cs Sorption onto Natural and Ferrocyanide-Modified Glauconite and Clinoptilolite. Radiochemistry 2018, 60, 35–41. [Google Scholar] [CrossRef]
- Silber, A.; Bar-Yosef, B.; Singer, A.; Chen, Y. Mineralogical and Chemical Composition of Three Tuffs from Northern Israel. Geoderma 1994, 63, 123–144. [Google Scholar] [CrossRef]
- Gong, N.; Hong, H.; Huff, W.D.; Fang, Q.; Bae, C.J.; Wang, C.; Yin, K.; Chen, S. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China. Sci. Rep. 2018, 8, 7616. [Google Scholar] [CrossRef]
- Manecki, A.; Muszynski, M. Przewodnik Do Petrografii: Praca Zbiorowa; AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne: Krakow, Poland, 2008; ISBN 978-83-7464-110-4. [Google Scholar]
- Aurica, P.; Ioan, V.-S.; Damian, G.; Iepure, G. Removal of Heavy Metals from Wastewater by Using Zeolitic Tuff. Carpathian J. Earth Environ. Sci. 2012, 7, 239–248. [Google Scholar]
- Karatas, M. Removal of Pb(II) from Water by Natural Zeolitic Tuff: Kinetics and Thermodynamics. J. Hazard. Mater. 2012, 199–200, 383–389. [Google Scholar] [CrossRef]
- Radaideh, J.A.; Abdulgader, H.A.; Barjenbruch, M. Evaluation of Absorption Process for Heavy Metals Removal Found in Pharmaceutical Wastewater. J. Med. Toxicol. Clin. Forensic Med. 2017, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Aljbour, S.H.; Al-Harahsheh, A.M.; Aliedeh, M.A.; Al-Zboon, K.; Al-Harahsheh, S. Phosphate Removal from Aqueous Solutions by Using Natural Jordanian Zeolitic Tuff. Adsorpt. Sci. Technol. 2017, 35, 284–299. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Osman, H.H.; Sayed, S.A.; Shalabi, M.E.H. The Removal of Uranium and Thorium from Their Aqueous Solutions via Glauconite. Desalination Water Treat. 2015, 53, 760–767. [Google Scholar] [CrossRef]
- Reczek, L.; Michel, M.M.; Trach, Y.; Siwiec, T.; Tytkowska-Owerko, M. The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt—Order and Diffusion Models Analysis. Minerals 2020, 10, 1065. [Google Scholar] [CrossRef]
- Trach, Y.; Tytkowska-Owerko, M.; Reczek, L.; Michel, M. Comparison the Adsorption Capacity of Ukrainian Tuff and Basalt with Zeolite–Manganese Removal from Water Solution. J. Ecol. Eng. 2021, 22, 161–168. [Google Scholar] [CrossRef]
- Kosorukov, P. Study of the Mineral Composition and Main Characteristics of the Saponite of the Varvarovsky Quarry. Energy Technol. Resour. Sav. 2011, 3, 38–42. [Google Scholar]
- Tsymbalyuk, V. Studies of Different Types of Modification and Catalytic Properties of Basalt Tuff and Their Possibilities for Wastewater Treatment. Chem. Phys. Surf. Technol. 2014, 5, 335–348. [Google Scholar]
- Ukrainian Standard DSTU B V. 2.1–3–96. In Soils. Laboratory Tests. General Provisions; State Committee of Ukraine for Urban Planning and Architecture: Kyiv, Ukraine, 1997.
- Ukrainian Standard DSTU B V. 2.1–4–96. In Soils. Methods of Laboratory Determination of Strength and Deformation Characteristics; State Committee of Ukraine for Urban Planning and Architecture: Kyiv, Ukraine, 1997.
- Ukrainian Standard DSTU B V. 2.7–42–97. In Building Materials. Methods for Determining Water Absorption, Density and Frost Resistance of Building Materials and Products; State Committee for Urban Development of Ukraine: Kyiv, Ukraine, 1997.
- Madsen, F.T.; Müller-Vonmoos, M. The Swelling Behaviour of Clays. Appl. Clay Sci. 1989, 4, 143–156. [Google Scholar] [CrossRef]
- Asniar, N.; Purwana, Y.; Surjandari, N. Tuff as Rock and Soil: Review of the Literature on Tuff Geotechnical, Chemical and Mineralogical Properties around the World and in Indonesia. In Proceedings of the Exploring Resources, Process And Design For Sustainable Urban Development: Proceedings of the 5th International Conference on Engineering, Technology, and Industrial Application (ICETIA), Surakarta, Indonesia, 12–13 December 2018; p. 050022. [Google Scholar]
- Akgün, Y. Karşılaştırmalı Bir Çalışma: Analsim ve Klinoptilolit İçeren Katkılı Çimentolar. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 2019, 748–758. [Google Scholar] [CrossRef]
- Akgün, Y. Determination of Pozzolanic Activity for Using Natural Zeolite Analcime in Sustainability Additive Cement Products. Period. Eng. Nat. Sci. PEN 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, K.G.; Gupta, S.S. Kaolinite, Montmorillonite, and Their Modified Derivatives as Adsorbents for Removal of Cu (II) from Aqueous Solution. Sep. Purif. Technol. 2006, 50, 388–397. [Google Scholar] [CrossRef]
- Jeon, B.-H.; Dempsey, B.; Burgos, W.; Royer, R.; Roden, E. Modeling the Sorption Kinetics of Divalent Metal Ions to Hematite. Water Res. 2004, 38, 2499–2504. [Google Scholar] [CrossRef]
- Davis, A.D.; Webb, C.J.; Sorensen, J.L.; Dixon, D.J.; Hudson, R. Geochemical Thermodynamics of Cadmium Removal from Water with Limestone. Environ. Earth Sci. 2018, 77, 37. [Google Scholar] [CrossRef]
- Manceau, A.; Drits, V.A.; Lanson, B.; Chateigner, D.; Wu, J.; Huo, D.; Gates, W.P.; Stucki, J.W. Oxidation-Reduction Mechanism of Iron in Dioctahedral Smectites: II. Crystal Chemistry of Reduced Garfield Nontronite. Am. Mineral. 2000, 85, 153–172. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of Ni (II) on Clays. J. Colloid Interface Sci. 2006, 295, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, F.; Cametti, G.; Vanhecke, D.; Churakov, S.V. The Role of Interfaces in Controlling Pb2+ Removal by Calcium Carbonate Minerals. Cryst. Growth Des. 2020, 20, 6157–6169. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides. Chem. Rev. 1996, 96, 3327–3350. [Google Scholar] [CrossRef] [Green Version]
- Simon, F.G.; Meggyes, T.; McDonald, C. Advanced Groundwater Remediation: Active and Passive Technologies; ICE Publishing: London, UK, 2002; ISBN 978-0-7277-3121-0. [Google Scholar]
- Brigatti, M.F.; Franchini, G.; Lugli, C.; Medici, L.; Poppi, L.; Turci, E. Interaction between Aqueous Chromium Solutions and Layer Silicates. Appl. Geochem. 2000, 15, 1307–1316. [Google Scholar] [CrossRef]
- Weerasooriya, R.; Dharmasena, B. Pyrite-Assisted Degradation of Trichloroethene (TCE). Chemosphere 2001, 42, 389–396. [Google Scholar] [CrossRef]
- Bibi, I.; Niazi, N.; Choppala, G.; Burton, E. Chromium(VI) Removal by Siderite (FeCO3) in Anoxic Aqueous Solutions: An X-Ray Absorption Spectroscopy Investigation. Sci. Total Environ. 2018, 640–641, 1424–1431. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, S.; Dai, C.; Duan, Y.; Makhinov, A.N.; Hon, L.K.; Araruna Júnior, J.T. Study on the Influence Mechanism of Underground Mineral Element Fe(II) on Cr(VI) Transformation under Subsurface and Groundwater Interaction Zones. Environ. Sci. Eur. 2020, 32, 62. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.J.; Metzler, D.R.; Dwyer, B.P. Removal of As, Mn, Mo, Se, U, V and Zn from Groundwater by Zero-Valent Iron in a Passive Treatment Cell: Reaction Progress Modeling. J. Contam. Hydrol. 2002, 56, 99–116. [Google Scholar] [CrossRef]
- Fronczyk, J.; Pawluk, K. Hydraulic Performance of Zero-Valent Iron and Nano-Sized Zero-Valent Iron Permeable Reactive Barriers-Laboratory Test. Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2014, 33–46. [Google Scholar] [CrossRef]
- Sakizci, M. Investigation of Thermal and Structural Properties of Natural and Ion-Exchanged Analcime. Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 2016, 17, 724–734. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, F. Synthesis of High Capacity Cation Exchangers from a Low-Grade Chinese Natural Zeolite. J. Hazard. Mater. 2009, 166, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Tangkawanit, S.; Rangsriwatananon, K.; Dyer, A. Ion Exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in Analcime (ANA) Synthesized from Thai Perlite. Microporous Mesoporous Mater. 2005, 79, 171–175. [Google Scholar] [CrossRef]
- Abdelmoneim, A.A.; Abdul-Moneim, M.; Geies, A.A.; Farghaly, S.O. Synthesis, Characterization and Application of Analcime to Control Nitrate Ions from the Ground Water Samples from Wadi El-Assiuti—Egypt as a Low-Cost and Locally Available Adsorbent. IOP Conf. Ser. Mater. Sci. Eng. 2021, 975, 012013. [Google Scholar] [CrossRef]
- Runtti, H.; Tynjälä, P.; Tuomikoski, S.; Kangas, T.; Hu, T.; Rämö, J.; Lassi, U. Utilisation of Barium-Modified Analcime in Sulphate Removal: Isotherms, Kinetics and Thermodynamics Studies. J. Water Process Eng. 2017, 16, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Takaluoma, E.; Samarina, T. Valorisation of Sidestream from Lithium Refining—Activation of Analcime. In Proceedings of the 6th World Congress on New Technologies, Prague, Czech Republic, 19–21 August 2020. [Google Scholar]
- Shao, N.; Tang, S.; Li, S.; Chen, H.; Zhang, Z. Defective Analcime/Geopolymer Composite Membrane Derived from Fly Ash for Ultrafast and Highly Efficient Filtration of Organic Pollutants. J. Hazard. Mater. 2020, 388, 121736. [Google Scholar] [CrossRef]
- Adegoke, H.I.; Adekola, F.A.; Fatoki, O.S.; Ximba, B.J. Sorptive Interaction of Oxyanions with Iron Oxides: A Review. Pol. J. Environ. Stud. 2013, 7–22. [Google Scholar]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic Adsorption onto Hematite and Goethite. Comptes Rendus Chim. 2009, 12, 876–881. [Google Scholar] [CrossRef]
- Charlet, L.; Morin, G.; Rose, J.; Wang, Y.; Auffan, M.; Burnol, A.; Fernandez-Martinez, A. Reactivity at (Nano)Particle-Water Interfaces, Redox Processes, and Arsenic Transport in the Environment. Comptes Rendus Geosci. 2011, 343, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, J.; Martinez, M.; Depablo, J.; Rovira, M.; Duro, L. Arsenic Sorption onto Natural Hematite, Magnetite, and Goethite. J. Hazard. Mater. 2007, 141, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Ajouyed, O.; Hurel, C.; Ammari, M.; Allal, L.B.; Marmier, N. Sorption of Cr(VI) onto Natural Iron and Aluminum (Oxy)Hydroxides: Effects of pH, Ionic Strength and Initial Concentration. J. Hazard. Mater. 2010, 174, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.B.; Gupta, G.S.; Prasad, G.; Rupainwar, D.C. The Use of Hematite for Chromium(VI) Removal. J. Environ. Sci. Health Part Environ. Sci. Eng. Toxicol. 1993, 28, 1813–1826. [Google Scholar] [CrossRef]
- Yin, S.; Ellis, D.E. DFT Studies of Cr(VI) Complex Adsorption on Hydroxylated Hematite Surfaces. Surf. Sci. 2009, 603, 736–746. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, X.; Yang, S.; Guo, Z.; Sheng, G. Impact of Water Quality Parameters on the Sorption of U(VI) onto Hematite. J. Environ. Radioact. 2012, 103, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa, J.; Mumbi, R.; Ray, A.; Rakshit, S.; Essington, M.E.; Sarkar, D. Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study. Soil Syst. 2021, 5, 20. [Google Scholar] [CrossRef]
- Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.C.; Monteil-Rivera, F.; Dumonceau, J.; Milonjic, S. Sorption of Selenium Anionic Species on Apatites and Iron Oxides from Aqueous Solutions. J. Environ. Radioact. 2003, 70, 61–72. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Artiola, J.F. Chemical Contaminants. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–190. ISBN 978-0-12-814719-1. [Google Scholar]
- Casentini, B.; Lazzazzara, M.; Amalfitano, S.; Salvatori, R.; Guglietta, D.; Passeri, D.; Belardi, G. Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water 2019, 11, 1897. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.; He, D.; Dong, H. The Limitations of Applying Zero-Valent Iron Technology in Contaminants Sequestration and the Corresponding Countermeasures: The Development in Zero-Valent Iron Technology in the Last Two Decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef]
- Drits, V.A.; Manceau, A. A Model for the Mechanism of Fe3+ to Fe2+ Reduction in Dioctahedral Smectites. Clays Clay Miner. 2000, 48, 185–195. [Google Scholar] [CrossRef]
Well | Depth, m | Core Sample ID | Colour Description |
---|---|---|---|
Radoshivka–1 | 18.0–18.3 | R–1(18.0) | Brown-grey |
27.6–27.9 | R–1(27.6) | Brown-grey | |
47.2–47.5 | R–1(47.2) | Red-brown | |
63.2–63.5 | R–1(63.2) | Red-brown | |
Radoshivka–2 | 19.6–19.9 | R–2(19.6) | Brown-grey |
46.6–46.9 | R–2(46.6) | Brown-grey | |
60.8–61.1 | R–2(60.8) | Red-brown | |
76.0–76.3 | R–2(76.0) | Red-brown | |
86.2–86.5 | R–2(86.2) | Red-brown |
Sample ID | Moisture Content, % w/w | Density, g/cm3 | Dry Density, g/cm3 | Compressive Strength, MPa | Water Absorption, % w/w | Water Absorption, % v/v |
---|---|---|---|---|---|---|
R–1(18.0) | 4.2 | 2.00 | 1.92 | 5.72 | 18.0 | 33 |
R–1(27.6) | 7.3 | 1.92 | 1.79 | 6.24 | 16.3 | 31 |
R–1(47.2) | 7.4 | 2.46 | 2.29 | 4.63 | 15.8 | 30 |
R–1(63.2) | 5.9 | 2.52 | 2.38 | 9.32 | 14.2 | 31 |
R–2(19.6) | 4.6 | 2.05 | 1.96 | 7.81 | 17.5 | 33 |
R–2(46.6) | 8.6 | 2.66 | 2.45 | 5.82 | 15.6 | 31 |
R–2(60.8) | 9.9 | 2.45 | 2.23 | 11.13 | 14.1 | 31 |
R–2(76.0) | 5.0 | 2.54 | 2.42 | 8.61 | 13.8 | 29 |
R–2(86.2) | 3.3 | 2.50 | 2.42 | 4.34 | 13.2 | 28 |
Components | Sample ID | |||
---|---|---|---|---|
R–1(18.0) | R–1(27.6) | R–1(47.2) | R–1(63.2) | |
Loss on ignition 950 °C | 15.79 | 17.31 | 14.64 | 12.1 |
SiO2 | 42.23 | 41.65 | 42.27 | 44.76 |
Al2O3 | 12.97 | 11.98 | 12.38 | 12.61 |
Fe2O3 | 14.05 | 14.2 | 12.03 | 12.29 |
CaO | 2.78 | 3.54 | 3.32 | 2.54 |
MgO | 9.09 | 8.08 | 9.86 | 9.48 |
SO3 | 0.05 | 0.02 | 0.02 | 0.02 |
K2O | 1.45 | 1.34 | 0.66 | 0.75 |
Na2O | 0.13 | 0.19 | 3.22 | 3.62 |
Cr2O3 | 0.041 | 0.067 | 0.029 | 0.023 |
TiO2 | 1.655 | 1.677 | 1.356 | 1.462 |
Mn2O3 | 0.185 | 0.135 | 0.158 | 0.184 |
P2O5 | 0.141 | 0.134 | 0.127 | 0.127 |
SrO | 0.014 | 0.015 | 0.014 | 0.014 |
ZnO | 0.014 | 0.011 | 0.016 | 0.017 |
Components | Sample ID | ||||
---|---|---|---|---|---|
R–2(19.6) | R–2(46.6) | R–2(60.8) | R–2(76.0) | R–2(86.2) | |
Loss on ignition 950 °C | 10.02 | 14.76 | 11.43 | 14.37 | 12.1 |
SiO2 | 46.6 | 43.58 | 44.62 | 45.51 | 53.27 |
Al2O3 | 13.04 | 12.17 | 12.57 | 12.4 | 13.6 |
Fe2O3 | 14.9 | 12.58 | 12.8 | 12.24 | 11.09 |
CaO | 3.36 | 2.8 | 4.46 | 1.72 | 1.39 |
MgO | 8.36 | 9.21 | 9.01 | 7.65 | 3.06 |
SO3 | 0.17 | 0.05 | 0.04 | 0.01 | 0.04 |
K2O | 1.05 | 0.9 | 0.56 | 1.87 | 2.7 |
Na2O | 0.39 | 2.41 | 3.57 | 2.1 | 0.9 |
Cr2O3 | 0.017 | 0.023 | 0.027 | 0.019 | 0.026 |
TiO2 | 1.994 | 1.429 | 1.38 | 1.571 | 1.744 |
Mn2O3 | 0.149 | 0.145 | 0.172 | 0.223 | 0.235 |
P2O5 | 0.173 | 0.125 | 0.134 | 0.284 | 0.147 |
SrO | 0.017 | 0.016 | 0.015 | 0.019 | 0.026 |
ZnO | 0.013 | 0.014 | 0.015 | 0.03 | 0.021 |
Components | Sample ID | |||
---|---|---|---|---|
R–1(18.0) | R–1(27.6) | R–1(47.2) | R–1(63.2) | |
Chlorite | 35 | 30 | - | - |
Analcime | - | - | 54.5 | 56 |
Quartz | 15 | 20 | 18.5 | 15.5 |
Kaolinite | 18 | 18 | - | - |
Pyroxene | 10 | 10 | - | - |
Hematite | 10 | 12 | 17 | 18.5 |
Calcite | 10 | 8 | 10 | 10 |
Anatase | 2 | 2 | - | - |
Components | Sample ID | ||||
---|---|---|---|---|---|
R–2(19.6) | R–2(46.6) | R–2(60.8) | R–2(76.0) | R–2(86.2) | |
Chlorite | 35.5 | - | - | - | - |
Analcime | - | 57 | 62 | 40 | - |
Quartz | 18.5 | 18 | 15 | 35 | 75 |
Kaolinite | 16 | - | - | - | - |
Pyroxene | 11 | - | - | - | - |
Hematite | 8.5 | 18 | 15 | 18 | 15 |
Calcite | 8 | 5 | 6.5 | 5 | - |
Anatase | 2.5 | 2 | 1.5 | 2 | 2 |
Berlinite | - | - | - | - | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trach, Y.; Melnychuk, V.; Michel, M.M.; Reczek, L.; Siwiec, T.; Trach, R. The Characterization of Ukrainian Volcanic Tuffs from the Khmelnytsky Region with the Theoretical Analysis of Their Application in Construction and Environmental Technologies. Materials 2021, 14, 7723. https://doi.org/10.3390/ma14247723
Trach Y, Melnychuk V, Michel MM, Reczek L, Siwiec T, Trach R. The Characterization of Ukrainian Volcanic Tuffs from the Khmelnytsky Region with the Theoretical Analysis of Their Application in Construction and Environmental Technologies. Materials. 2021; 14(24):7723. https://doi.org/10.3390/ma14247723
Chicago/Turabian StyleTrach, Yuliia, Victor Melnychuk, Magdalena Maria Michel, Lidia Reczek, Tadeusz Siwiec, and Roman Trach. 2021. "The Characterization of Ukrainian Volcanic Tuffs from the Khmelnytsky Region with the Theoretical Analysis of Their Application in Construction and Environmental Technologies" Materials 14, no. 24: 7723. https://doi.org/10.3390/ma14247723
APA StyleTrach, Y., Melnychuk, V., Michel, M. M., Reczek, L., Siwiec, T., & Trach, R. (2021). The Characterization of Ukrainian Volcanic Tuffs from the Khmelnytsky Region with the Theoretical Analysis of Their Application in Construction and Environmental Technologies. Materials, 14(24), 7723. https://doi.org/10.3390/ma14247723