Evaluation of Calcium Aluminate Slags and Pig Irons Produced from the Smelting-Reduction of Diasporic Bauxite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Analytical Techniques
2.2. Smelting and Smelting-Reduction Trials
2.3. Thermodynamic Equilibrium and Scheil-Gulliver Calculations
3. Results
3.1. Theoretical Results
3.2. Experimental Results
3.2.1. Input Materials Characteristics
3.2.2. Products Characteristics
Holding Time
CaO/Al2O3 Ratio
Effect of Atmosphere and Crucible
Phase Quantification
4. Discussion
4.1. Reduction of Oxides
4.2. Aluminates in the Slags Produced in Different Crucibles
4.3. The Effect of Process Conditions
4.4. Alumina Recovery Evaluation
5. Conclusions
- Iron was reduced and separated from the slags in the presence of carbon regardless of the characteristics of the feed material (reduced and calcined bauxite). This was further confirmed from the thermodynamic evaluations. Iron was separated in the form of pig iron that was found to contain low level of impurities such as Si, S, and Ti, and more specifically:
- Cr was distributed in the metallic phase;
- Ti was precipitated in complex (Ti,V)C carbide particles;
- Si and Ti were mainly distributed in the slag;
- In the absence of carbon (alumina crucible), iron was separated from the slag for the reduced bauxite, and this offers promising perspective for a process with reduced CO2 emissions;
- The distribution of the major species and phases in the solidified slags was crosschecked between the thermodynamic predictions and experimental results. Differences for the minor phases and quantification aspects require further evaluation of the thermodynamic data and limitations;
- Slags with alumina containing leachable phases were formed in graphite crucible while increasing the lime addition resulted in the formation of C5A3, which is considered a highly leachable phase. As such, high alumina recoveries can be assumed according to the phase quantification;
- The dissolution of the alumina crucible into the slags and the provided atmospheric conditions (absence of C, higher ) result in changes in the product phases of the slags as compared to the graphite crucible. The slags contain both leachable (CA) and non-leachable (C2AS, CA2) phases and this is expected to retard the alumina recovery;
- The stabilization of C5A3/C12A7 was seen to be affected mainly from the atmospheric conditions that include the presence of higher partial pressures of O2/OH−.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Dentoni, V.; Grosso, B.; Massacci, G. Environmental Sustainability of the Alumina Industry in Western Europe. Sustainability 2014, 6, 9477–9493. [Google Scholar] [CrossRef] [Green Version]
- Gräfe, M.; Power, G.; Klauber, C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 2011, 108, 60–79. [Google Scholar] [CrossRef]
- The International Aluminium Institute. Aluminium Is the Most Abundant Metal in the Earth’s Crust. Available online: https://bauxite.world-aluminium.org/mining/process/ (accessed on 11 November 2021).
- Safarian, J.; Kolbeinsen, L. Sustainability in alumina production from bauxite. In Proceedings of the Sustainable Industrial Processing Summit, Hainan, China, 6–10 November 2016; pp. 75–82. [Google Scholar]
- Miller, J.; Irgens, A. Alumina Production by the Pedersen Process—History and Future. In Essential Readings in Light Metals: Volume 1 Alumina and Bauxite; Donaldson, D., Raahauge, B.E., Eds.; Springer International Publishing: Cham, Switzerland, 1974; pp. 977–982. [Google Scholar]
- Nielsen, K. The pedersen process—An old process in a new light. Erzmetall 1978, 31, 523–525. [Google Scholar]
- Azof, F.I.; Yang, Y.; Panias, D.; Kolbeinsen, L.; Safarian, J. Leaching characteristics and mechanism of the synthetic calcium-aluminate slags for alumina recovery. Hydrometallurgy 2019, 185, 273–290. [Google Scholar] [CrossRef]
- Azof, F.I.; Kolbeinsen, L.; Safarian, J. Characteristics of Calcium-Aluminate Slags and Pig Iron Produced from Smelting-Reduction of Low-Grade Bauxites. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018, 49, 2400–2420. [Google Scholar] [CrossRef] [Green Version]
- Vafeias, M.; Marinos, D.; Panias, D.; Safarian, J.; Van Der Eijk, C.; Solhem, I.; Balomenos, E.; Ksiazek, M.; Davris, P. From red to grey: Revisiting the Pedersen process to achieve holistic bauxite ore utilisation. In Proceedings of the 2nd International Bauxite Residue Valorisation and Best Practices Conference, Athens, Greece, 7–10 May 2018; pp. 111–117. [Google Scholar]
- Sellaeg, H.; Kolbeinsen, L.; Safarian, J. Iron Separation from Bauxite Through Smelting-Reduction Process. In Light Metals 2017; Ratvik, A., Ed.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2017; pp. 127–135. [Google Scholar]
- Mwase, J.M.; Safarian, J. Investigating the Leaching, Desilication and Precipitation of Aluminium Tri-Hydroxides From a Bauxite Residue-Bauxite By-Product Slag. In Proceedings of the 38th ICSOBA Conference, Virtual, 16–18 November 2020; pp. 16–18. [Google Scholar]
- Vafeias, M.; Bempelou, A.; Georgala, E.; Davris, P.; Balomenos, E.; Panias, D. Leaching of Ca-Rich Slags Produced from Reductive Smelting of Bauxite Residue with Na2CO3 Solutions for Alumina Extraction: Lab and Pilot Scale Experiments. Minerals 2021, 11, 896. [Google Scholar] [CrossRef]
- Marinos, D.; Vafeias, M.; Sparis, D.; Kotsanis, D.; Balomenos, E.; Panias, D. Parameters Affecting the Precipitation of Al Phases from Aluminate Solutions of the Pedersen Process: The Effect of Carbonate Content. J. Sustain. Metall. 2021, 7, 874–882. [Google Scholar] [CrossRef]
- Konlechner, D.; Vafeias, M.; Marinos, D.; Mwase, J. First industrial scale mass balance data for the reengineered pedersen process developed within the EU funded project ENSUREAL. In Proceedings of the 3rd International Bauxite Residue Valorisation and Best Practices Conference, Virtual, 29 September–1 October 2020; pp. 39–46. [Google Scholar]
- Lazou, A.; Eijk CVan Der Kolbeinsen, L.; Safarian, J. The production of a pig iron and calcium aluminate slags for alumina recovery from bauxite ore. In Proceedings of the 11th Molten Slags, Fluxes, and Salts [MOLTEN 2020], Virtual, 21–25 February 2021; pp. 3–4. [Google Scholar]
- Lazou, A.; Van Der Eijk, C.; Tang, K.; Balomenos, E.; Kolbeinsen, L.; Safarian, J. The Utilization of Bauxite Residue with a Calcite-Rich Bauxite Ore in the Pedersen Process for Iron and Alumina Extraction. Metall. Mater. Trans. B 2021, 52, 1255–1266. [Google Scholar] [CrossRef]
- Bo, W.; Jianxin, Z.; Shufeng, Z.; Huilan, S. Effect of Calcium/Aluminium Ratio on Crystal Structure and Al2O3 Leaching Property of 12CaO-7Al2O3. In Light Metals 2014; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 87–90. [Google Scholar]
- Bo, W.; Hui-lan, S.; Xue-zheng, Z.; Shi-wen, B. The Effect of Cooling Rate on the Leachability of Calcium Aluminate Slags. In Light Metals 2011; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 241–244. [Google Scholar]
- Palacios, L.; De La Torre, Á.G.; Bruque, S.; García-Muñoz, J.L.; García-Granda, S.; Sheptyakov, D.; Aranda, M.A. Crystal structures and in-situ formation study of mayenite electrides. Inorg. Chem. 2007, 46, 4167–4176. [Google Scholar] [CrossRef]
- Salasin, J.; Rawn, C. In-Situ Kinetic Investigation of Calcium Aluminate Formation. Ceramics 2018, 1, 175–197. [Google Scholar] [CrossRef] [Green Version]
- Zhmoidin, G.I.; Chatterjee, A.K. Conditions and mechanism of interconvertibility of compounds 12CaO.7Al2O3 and 5CaO.3Al2O3. Cem. Concr. Res. 1984, 14, 386–396. [Google Scholar] [CrossRef]
- Lazou, A.; Van der Eijk, C.; Balomenos, E.; Kolbeinsen, L.; Safarian, J. High temperature smelting reduction of bauxite residue and a CaCO3 -rich bauxite for aluminate slag production and pig iron recovery. In Proceedings of the 3rd International Bauxite Residue Valorisation and Best Practices Conference, Virtual, 29 September–1 October 2020; pp. 77–83. [Google Scholar]
- Lazou, A.; van der Eijk, C.; Balomenos, E.; Safarian, J. Smelting reduction of bauxite residue and beneficiation by-product in view of a leachable slag and pig Iron production. In Proceedings of the 10th European Metallurgical Conference EMC 2019, Dusseldorf, Germany, 23–26 June 2019; Volume 1, pp. 17–33. [Google Scholar]
- Zhang, Y.; Gao, Q.; Zhao, J.; Li, M.; Qi, Y. Semi-smelting reduction and magnetic separation for the recovery of iron and alumina slag from iron rich bauxite. Minerals 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Lazou, A.; van der Eijk, C.; Balomenos, E.; Kolbeinsen, L.; Safarian, J. On the Direct Reduction Phenomena of Bauxite Ore Using H2 Gas in a Fixed Bed Reactor. J. Sustain. Metall. 2020, 6, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.B.; Petersen, S. FactSage thermochemical software and databases, 2010–2016. Calphad Comput. Coupling Phase Diagr. Thermochem. 2016, 54, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Pelton, A.D.; Eriksson, G.; Bale, C.W. Scheil–Gulliver Constituent Diagrams. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 3113–3129. [Google Scholar] [CrossRef]
- Hallstedl, B. Assessment of the CaO-Al2O3 System. J. Am. Ceram. Soc. 1990, 73, 15–23. [Google Scholar] [CrossRef]
- Outotec. HSC Chemistry. Finland. Available online: www.outotec.com (accessed on 11 November 2021).
- Azof, F.I.; Tang, K.; You, J.; Safarian, J. Synthesis and Characterization of 12CaO·7Al2O3 Slags: The Effects of Impurities and Atmospheres on the Phase Relations. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2020, 51, 2689–2710. [Google Scholar] [CrossRef]
- Saines, P.J.; Elcombe, M.M.; Kennedy, B.J. Lanthanide distribution in some doped alkaline earth aluminates and gallates. J. Solid State Chem. 2006, 179, 613–622. [Google Scholar] [CrossRef]
- Baldock, P.J.; Parker, A.; Sladdin, I. X-ray powder diffraction data for calcium monoaluminate and calcium dialuminate. J. Appl. Cryst. 1970, 3, 188–191. [Google Scholar] [CrossRef]
- Náray-Szabó, S. Der Strukturtyp des Perowskits (CaTiO3). Naturwissenschaften 1943, 31, 202–203. [Google Scholar] [CrossRef]
- Gemmi, M.; Merlini, M.; Cruciani, G.; Artioli, G. Non-ideality and defectivity of the åkermanite-gehlenite solid solution: An X-ray diffraction and TEM study. Am. Mineral. 2007, 92, 1685–1694. [Google Scholar] [CrossRef]
- Wong-Ng, W.; McMurdie, H.F.; Paretzkin, B.; Hubbard, C.R.; Dragoo, A.L.; Stewart, J.M. Standard X-Ray Diffraction Powder Patterns of Fifteen Ceramic Phases. Powder Diffr. 1987, 2, 106–117. [Google Scholar] [CrossRef]
- Aruja, E. The unit cell of orthorhombic pentacalcium trialuminate, 5CaO.3Al2O3. Acta Crystallogr. 1957, 10, 337–339. [Google Scholar] [CrossRef]
- Swanson, H.E. Standard X-ray Diffraction Powder Patterns; United States Department of Commerce National Bureau of Standards; U.S. Government Printing Office: Washington, DC, USA, 1995.
- Morris, M.C.; McMurdie, H.F.; Evans, E.H.; Paretzkin, B.; Parker, H.S.; Pyrros, N.P. Standard X-ray Diffraction Powder Patterns: Section 19—Data for 51 Substances; Natl. Bur. Stand; U.S. Government Printing Office: Washington, DC, USA, 1982; Volume 25.
- Mumme, W.G.; Hill, R.J.; Bushnell-Wye, G.; Segnit, E.R. Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrb. Miner. Abh. 1995, 169, 35–68. [Google Scholar]
- Ding, Y.; Liu, H.; Xu, J.; Prewitt, C.T.; Hemley, R.J.; Mao, H.K. Zone-axis diffraction study of pressure-induced inhomogeneity in single-crystal Fe1−xO. Appl. Phys. Lett. 2005, 87, 041912. [Google Scholar] [CrossRef]
- Fleet, M.E. The structure of magnetite: Symmetry of cubic spinels. J. Solid State Chem. 1986, 62, 75–82. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Gorbunov, V.A.; Babkina, A.A.; Esina, N.O. High-temperature electrical transport in Al-doped calcium and strontium titanates. Ionics 2003, 9, 67–70. [Google Scholar] [CrossRef]
- Patel, D.; Nanavati, P.; Chug, C. Effect of Ca and Ba Containing Ferrosilicon Inoculants on Microstructure and Tensile Properties of IS-210, and IS-1862 Cast Irons. In Proceedings of the National Conference on Emerging Trends in Engineering Technology & Management, Ahmedabad, Gujarat, India, 30 January 2013; pp. 1–8. [Google Scholar]
- Safarian, J.; Kolbeinsen, L. Smelting-reduction of bauxite for sustainable alumina production. In Proceedings of the Sustainable Industrial Processing Summit and Exhibition, Hainan, China, 6–10 November 2016; pp. 149–158. [Google Scholar]
- Rankin, G.A.; Wright, F.E. The ternary system CaO-Al2O3-SiO2, with optical study by F. E. Wright. Am. J. Sci. 1915, 39, 1–79. [Google Scholar] [CrossRef]
- Nurse, R. The CaO-Al2O3 system in a moisture free atmosphere. Trans. Br. Ceram. Soc. 1965, 64, 409–418. [Google Scholar]
- Nurse, R.; Welch, J.H.; Majumdar, A.J. The 12CaO.7Al2O3 phase in the CaO-Al2O3 system. Trans. Nonferrous Met. Soc. China 1965, 64, 323–332. [Google Scholar]
- Imlach, J.A.; Dent Glasser, L.S.; Glasser, F.P. Excess oxygen and the stability of “12CaO.7Al2O3”. Cem. Concr. Res. 1971, 1, 57–61. [Google Scholar] [CrossRef]
- Jeevaratnam, J.; Glasser, F.P.; Glasser, L.S.D. Anion Substitution and Structure of 12CaO 7Al2O3. J. Am. Ceram. Soc. 1964, 47, 105–106. [Google Scholar] [CrossRef]
- Kim, S.; Kageyama, M.; Gao, X.; Ueda, S.; Kitamura, S.Y. Solubility of Sulfur in the Solid Oxide of the Calcium-Aluminate System. ISIJ Int. 2019, 59, 1752–1755. [Google Scholar] [CrossRef] [Green Version]
- Nityanand, N.; Fine, H.A. The effect of TiO2 additions and oxygen potential on liquidus temperatures of some CaO-Al2O3 melts. Metall. Trans. B 1983, 14, 685–692. [Google Scholar] [CrossRef]
- Kim, S.W.; Miyakawa, M.; Hayashi, K.; Sakai, T.; Hirano, M.; Hosono, H. Simple and efficient fabrication of room temperature stable electride: Melt-solidification and glass ceramics. J. Am. Chem. Soc. 2005, 127, 1370–1371. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Toda, Y.; Hayashi, K.; Hirano, M.; Hosono, H. Synthesis of a room temperature stable 12CaO·7Al2O3 electride from the melt and its application as an electron field emitter. Chem. Mater. 2006, 18, 1938–1944. [Google Scholar] [CrossRef]
- Chou, K.-S.; Burnet, G. Formation of Calcium Aluminates in the Lime Sinter Process. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1979; pp. 63–66. [Google Scholar]
- Eufinger, J.P.; Schmidt, A.; Lerch, M.; Janek, J. Novel anion conductors—Conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Phys. Chem. Chem. Phys. 2015, 17, 6844–6857. [Google Scholar] [CrossRef] [Green Version]
- Jerebtsov, D.A.; Mikhailov, G.G. Phase diagram of CaO-Al2O3 system. Ceram. Int. 2001, 27, 25–28. [Google Scholar] [CrossRef]
- Ruszak, M.; Witkowski, S.; Pietrzyk, P.; Kotarba, A.; Sojka, Z. The role of intermediate calcium aluminate phases in solid state synthesis of mayenite (Ca12Al14O33). Funct. Mater. Lett. 2011, 4, 183–186. [Google Scholar] [CrossRef]
- Fursman, O.; Blake, H.; Mauser, J. Recovery of alumina and iron from pacific northwest bauxites by the Pedersen process. US Dep. Inter. 1968, 7079, 1–24. [Google Scholar]
- Azof, F.I.; Safarian, J. Leaching kinetics and mechanism of slag produced from smelting-reduction of bauxite for alumina recovery. Hydrometallurgy 2020, 195, 105388. [Google Scholar] [CrossRef]
Test Code | Crucible | mCaO/mAl2O3 | Holding Time (min) | Average Cooling Rate a (°C/min) | Atmospheric Conditions during Smelting | (atm) |
---|---|---|---|---|---|---|
S-CB-T1 | Graphite | 0.88 | 60 | 10 | Ar, Reducing in absence of O2, presence of C | |
S-CB-T2/L1 | Graphite | 0.88 | 45 | 10 | Ar, Reducing in absence of O2, presence of C | |
S-CB-L2 | Graphite | 0.95 | 45 | 10 | Ar, Reducing in absence of O2, presence of C | |
S-CB-L3 | Graphite | 1.12 | 45 | 10 | Ar, Reducing in absence of O2, presence of C | 5.62 × 10−16 |
S-RB | Graphite | 1.12 | 45 | 10 | Ar, Reducing in absence of O2, presence of C | |
S-CB-FC | Graphite | 1.12 | 45 | 26 | Ar, Reducing in absence of O2, presence of C | |
S-CB-open | Graphite | 1.12 | 45 | 10 | Reducing in presence of O2 and C, exposure to air | 4.38 × 10−2 |
S-CB-H2O | Graphite | 1.12 | 45 | 10 | Ar- (5 vol.%) H2O | 5.63 × 10−16 |
S-A-CB | Alumina | 1.12 | 45 | 10 | Ar, absence of C | 0.17 |
S-A-RB | Alumina | 1.12 | 45 | 10 | Ar, absence of C | 0.17 |
Al2O3 | Fe2O3 * or Fe ** | SiO2 | TiO2 | CaO | Cr2O3 | MgO | CaCO3 | |
---|---|---|---|---|---|---|---|---|
wt.% | ||||||||
CB | 65.1 ± 0.4 | 25.6 ± 0.3 * | 2.00 ± 0.1 | 2.80 ± 0.1 | 4.10 ± 0.1 | 0.101 ± 0.1 | 0.00 | 0.00 |
RB | 71.1 ± 0.6 | 18.6 ± 0.2 ** | 2.31 ± 0.4 | 3.21 ± 0.1 | 4.42 ± 0.1 | 0.202 ± 0.1 | 0.00 | 0.00 |
Lime | 0.3 | 0.1 | 0.5 | 0.1 | 96.6 | 0.0 | 0.7 | 1.7 |
Mineral Formula | S-A-CB | S-A-SR | S-CB-L1 | S-CB-L2 | S-CB-L3 | S-CB-H2O | S-CB-Open | ICCD Number, Reference |
---|---|---|---|---|---|---|---|---|
CA | 72 | 76 | 64 | 55 | - | 42 | 18 | 04-013-0779, [32] |
CA2 | 10 | 17 | - | - | - | - | - | 00-023-1037, [33] |
CT | 3 | 2 | 4 | 5 | 5 | 6 | 6 | 04-015-4851, [34] |
C2AS | 3 | 5 | - | 2 | - | - | - | 04-014-4683, [35] |
C3A | - | - | 30 | 38 | - | - | - | 00-006-0495, [36] |
C5A3 | - | - | - | - | 92 | - | - | 04-007-8643, [37] |
C12A7 | - | - | - | - | - | 50 | 72 | 00-009-0413, [38] |
C2S * | 3 | - | - | - | - | - | - | 00-033-0302, [39] |
C2S ** | 4 | - | 2 | - | 3 | 3 | 4 | 04-012-6734, [40] |
FeO | 2 | - | - | - | - | - | - | 04-011-7345, [41] |
Fe3O4 | 3 | - | - | - | - | - | - | 04-015-9120, [42] |
Rwp | 8.8 | 11.8 | 6 | 6.1 | 9.5 | 9 | 11.8 | - |
Phases | Suggested Phase | Slags | |||||||
---|---|---|---|---|---|---|---|---|---|
S-CB-L3 (Atomic %) | |||||||||
Al | Ca | O | Mg | Si | Ti | V | C | ||
A-L3 | C5A3 | 26.5 | 27.1 | 45.3 | 0.52 | 0.62 | - | - | - |
B-L3 | CT | 12.5 | 24.8 | 50.4 | 0.62 | 2.22 | 9.61 | - | - |
C-L3 | TiC | - | 0.9 | - | - | 0.7 | 47.1 | 13.1 | 37.2 |
S-CB-FC (Atomic %) | |||||||||
A-FC | C5A3 | 26.8 | 26.4 | 46.1 | 0.33 | 0.71 | - | - | - |
B-FC | C2AS | 16.5 | 23.2 | 52.7 | 1.12 | 6.21 | 0.72 | - | - |
C-FC | CT/C2AS | 26.9 | 27.2 | 46.9 | 0.91 | 2.31 | 5.82 | - | - |
D-FC | C5A3/C2AS | 20.6 | 43.8 | 30.9 | 0.52 | 2.31 | 1.83 | - | - |
S-CB-open (Atomic %) | |||||||||
A-open | C12A7 | 34.4 | 19.9 | 45.7 | - | - | - | - | - |
B-open | CA/C2S | 18.7 | 31.6 | 44.5 | 0.83 | 3.61 | 0.82 | - | - |
C-open | CT/CA | 17.5 | 24.2 | 44.8 | 0.72 | 0.91 | 8.44 | - | - |
Sample | Metals * | ||||||||
Fe | Ti | V | Cr | Si | S | C | |||
S-CB-L3 | 99.5 | 0.03 | 0.21 | 0.31 | 0.01 | 0.01 | |||
S-RB | 99.2 | 0.03 | 0.21 | 0.50 | 0.01 | 0.01 |
Conditions during Smelting | Crucible Material | Obtained Slag Phase |
---|---|---|
Exposure in Air | Graphite | C12A7 |
Inert dry Ar | Graphite | C5A3 |
Ar-H2O | Graphite | C12A7 |
Absence of C | Al2O3 | Neither C12A7 nor C5A3 |
Mineral Formula | Rietvelt | FactSage | HSC |
---|---|---|---|
12CaO.7Al2O3 | 72 | 86 | 87 |
CaO.Al2O3 | 18 | - | - |
CaO.3Al2O3 | - | 5 | 4 |
CaO.TiO2 | 6 | - | 4 |
Ca3Ti2O7 (ss) | - | 4 | - |
2CaO.SiO2 | 4 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazou, A.; Kolbeinsen, L.; Safarian, J. Evaluation of Calcium Aluminate Slags and Pig Irons Produced from the Smelting-Reduction of Diasporic Bauxite. Materials 2021, 14, 7740. https://doi.org/10.3390/ma14247740
Lazou A, Kolbeinsen L, Safarian J. Evaluation of Calcium Aluminate Slags and Pig Irons Produced from the Smelting-Reduction of Diasporic Bauxite. Materials. 2021; 14(24):7740. https://doi.org/10.3390/ma14247740
Chicago/Turabian StyleLazou, Adamantia, Leiv Kolbeinsen, and Jafar Safarian. 2021. "Evaluation of Calcium Aluminate Slags and Pig Irons Produced from the Smelting-Reduction of Diasporic Bauxite" Materials 14, no. 24: 7740. https://doi.org/10.3390/ma14247740
APA StyleLazou, A., Kolbeinsen, L., & Safarian, J. (2021). Evaluation of Calcium Aluminate Slags and Pig Irons Produced from the Smelting-Reduction of Diasporic Bauxite. Materials, 14(24), 7740. https://doi.org/10.3390/ma14247740