Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Chemicals
2.2. Synthesis of DHLA-AuNCs
2.3. Characterization of DHLA-AuNCs
2.4. Synthesis and Characterization of Gal-DHLA-AuNCs
2.5. In Vitro Two-Photon Imaging
2.6. In Vivo Two-Photon Time-Gated Imaging
3. Results and Discussion
3.1. Characterization of DHLA-AuNCs
3.2. In Vitro Two-Photon Imaging of DHLA-AuNCs
3.3. In Vivo Two-Photon Time-Gated Imaging of DHLA-AuNCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massoud, T.F.; Gambhir, S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 2003, 17, 545–580. [Google Scholar] [CrossRef] [Green Version]
- Koo, V.; Hamilton, P.W.; Williamson, K. Non-invasive in vivo imaging in small animal research. Cell. Oncol. Off. J. Int. Soc. Cell. Oncol. 2016, 28, 127–139. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Chen, X.; Chen, X.; Xu, Z.; Zhang, W.; Liao, Q.; Duan, X.; Wang, X.; Liu, M.; et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 2017, 142, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Song, A.; Wang, F.; Chen, H. Sensitive and effective imaging of carbon monoxide in living systems with a near-infrared fluorescent probe. RSC Adv. 2021, 11, 32203–32209. [Google Scholar] [CrossRef]
- Kim, H.M.; Jung, C.; Kim, B.R.; Jung, S.-Y.; Hong, J.H.; Ko, Y.-G.; Lee, K.J.; Cho, B.R. Environment-Sensitive Two-Photon Probe for Intracellular Free Magnesium Ions in Live Tissue. Angew. Chem. 2007, 119, 3530–3533. [Google Scholar] [CrossRef]
- Juvekar, V.; Lee, H.W.; Kim, H.M. Two-Photon Fluorescent Probes for Detecting Enzyme Activities in Live Tissues. ACS Appl. Bio Mater. 2021, 4, 2957–2973. [Google Scholar] [CrossRef]
- Ricard, C.; Arroyo, E.D.; He, C.X.; Portera-Cailliau, C.; Lepousez, G.; Canepari, M.; Fiole, D. Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Struct. Funct. 2018, 223, 3011–3043. [Google Scholar] [CrossRef] [Green Version]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D.S.; Alivisatos, A.P.; Sauer, M.; Weiss, S. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett. 2001, 26, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama, M.; Sugimoto, H.; Fujii, M. Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue. Nanoscale 2018, 10, 13902–13907. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, C.; Dickson, R.M. Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Phys. Rev. Lett. 2004, 93, 077402. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, G.U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 2012, 4, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ai, A.; Yu, Z.; Deng, M.; Liu, W.; Zhou, G.; Zhang, W.; Cao, Y.; Wang, X. Dual-modal non-invasive imaging in vitro and in vivo monitoring degradation of PLGA scaffold based gold nanoclusters. Mater. Sci. Eng. C 2019, 107, 110307. [Google Scholar] [CrossRef]
- Ramanujan, V.K.; Zhang, J.-H.; Biener, E.; Herman, B. Multiphoton fluorescence lifetime contrast in deep tissue imaging: Prospects in redox imaging and disease diagnosis. J. Biomed. Opt. 2005, 10, 051407. [Google Scholar] [CrossRef]
- Al Kindi, H.; Mohamed, A.; Kajimoto, S.; Zhanpeisov, N.; Horino, H.; Shibata, Y.; Rzeznicka, I.I.; Fukumura, H. Single bovine serum albumin molecule can hold plural blue-emissive gold nanoclusters: A quantitative study with two-photon excitation. J. Photochem. Photobiol. A Chem. 2018, 357, 168–174. [Google Scholar] [CrossRef]
- Kojima, N.; Ikeda, K.; Kobayashi, Y.; Tsukuda, T.; Negishi, Y.; Harada, G.; Sugawara, T.; Seto, M. Study of the structure and electronic state of thiolate-protected gold clusters by means of 197Au Mssbauer spectroscopy. Hyperfine Interact. 2012, 207, 127–131. [Google Scholar] [CrossRef]
- Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270. [Google Scholar] [CrossRef]
- Xu, C.; Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996, 13, 481–491. [Google Scholar] [CrossRef]
- Sun, C.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L.; Guo, Y.; Xu, L.; Lei, J.; Gao, N.; Anderson, G.J.; et al. Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. J. Am. Chem. Soc. 2011, 133, 8617–8624. [Google Scholar] [CrossRef]
- Jin, D.; Piper, J.A. Time-Gated Luminescence Microscopy Allowing Direct Visual Inspection of Lanthanide-Stained Microorganisms in Background-Free Condition. Anal. Chem. 2011, 83, 2294–2300. [Google Scholar] [CrossRef]
- Cao, X.; Yao, C.; Jiang, S.; Gunn, J.; Van Namen, A.C.; Bruza, P.; Pogue, B.W. Time-gated luminescence imaging for background free in vivo tracking of single circulating tumor cells. Opt. Lett. 2020, 45, 3761–3764. [Google Scholar] [CrossRef]
- Shang, L.; Dong, S.; Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10, 2568–2573. [Google Scholar] [CrossRef]
- Li, Y.; Teng, S.; Wang, M.; Duan, B.; Huang, Z. Molecular crowding-modulated fluorescence emission of gold nanoclusters: Ligand-dependent behaviors and application in improved biosensing. Sens. Actuators B Chem. 2020, 330, 129290. [Google Scholar] [CrossRef]
- Duan, H.; Nie, S. Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers: A New Route to Fluorescent and Water-Soluble Atomic Clusters. J. Am. Chem. Soc. 2007, 129, 2412–2413. [Google Scholar] [CrossRef]
- Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G.U. Effect of Protein Adsorption on the Fluorescence of Ultrasmall Gold Nanoclusters. Small 2014, 10, 661–665. [Google Scholar] [CrossRef]
- Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. 2007, 119, 6948–6952. [Google Scholar] [CrossRef]
- Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362. [Google Scholar] [CrossRef]
- Zhou, M.; Higaki, T.; Li, Y.; Zeng, C.; Li, Q.; Sfeir, M.Y.; Jin, R. Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764. [Google Scholar] [CrossRef]
- Le Guevel, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387. [Google Scholar] [CrossRef]
- Homberger, M.; Schmid, S.; Timper, J.; Simon, U. Solid Phase Supported “Click”-Chemistry Approach for the Preparation of Water Soluble Gold Nanoparticle Dimers. J. Clust. Sci. 2012, 23, 1049–1059. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, S.; Ying, J.Y. Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots. Adv. Mater. 2010, 19, 376–380. [Google Scholar] [CrossRef]
- Xifeng, C.; Zhenzhen, G.; Peng, M. One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging. Heliyon 2018, 4, e00576. [Google Scholar]
- Jones, D.P.; Carlson, J.L.; Samiec, P.S.; Sternberg, P., Jr.; Mody, V.C., Jr.; Reed, R.L.; Brown, L.A. Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clin. Chim. Acta 1998, 275, 175–184. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073–4083. [Google Scholar] [CrossRef]
- Fernández-Suárez, M.; Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929–943. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, X.; Huang, Y.; Lu, Z.; Ai, H. Super-resolution imaging and real-time tracking lysosome in living cells by a fluorescent probe. Sci. China Ser. B Chem. 2018, 61, 483–489. [Google Scholar] [CrossRef]
- Polavarapu, L.; Manna, M.; Xu, Q.-H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2010, 3, 429–434. [Google Scholar] [CrossRef]
- Valenta, J.; Greben, M.; Pramanik, G.; Kvakova, K.; Cigler, P. Reversible photo- and thermal-effects on the luminescence of gold nanoclusters: Implications for nanothermometry. Phys. Chem. Chem. Phys. 2021, 23, 11954–11960. [Google Scholar] [CrossRef]
- Patel, S.A.; Richards, C.I.; Hsiang, J.-C.; Dickson, R.M. Water-Soluble Ag Nanoclusters Exhibit Strong Two-Photon-Induced Fluorescence. J. Am. Chem. Soc. 2008, 130, 11602–11603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, X.; Chen, X.; Zhu, H.; Liu, Y.; Chen, D.; Yuan, X.; Yao, Q.; Xie, J. Water-soluble metal nanoclusters: Recent advances in molecular-level exploration and biomedical applications. Dalton Trans. 2019, 48, 10385–10392. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.S.; Takahashi, M.; Thummala, N.R.; Parashar, B.; Chowdhury, N.R.; Chowdhury, J.R. Liver-directed gene therapy: Promises, problems and prospects at the turn of the century. J. Hepatol. 2000, 32, 238–252. [Google Scholar] [CrossRef]
- Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P.H. In Vitro Imaging and in Vivo Liver Targeting with Carbohydrate Capped Quantum Dots. J. Am. Chem. Soc. 2009, 131, 2110–2112. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Maiti, S.; Das, T.K.; Karmakar, S.; Roy, C.N.; Saha, A. Synthesis of luminescent biotinylated multivalent dendrimer encapsulated quantum dots and investigation on its physico-chemical interactions with biological receptor avidin. J. Lumin. 2021, 234, 117940. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Wei, M.; Wang, L.; Hong, Y.; Luo, D.; Sha, Y. Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters. Materials 2021, 14, 7744. https://doi.org/10.3390/ma14247744
Tian Y, Wei M, Wang L, Hong Y, Luo D, Sha Y. Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters. Materials. 2021; 14(24):7744. https://doi.org/10.3390/ma14247744
Chicago/Turabian StyleTian, Ye, Ming Wei, Lijun Wang, Yuankai Hong, Dan Luo, and Yinlin Sha. 2021. "Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters" Materials 14, no. 24: 7744. https://doi.org/10.3390/ma14247744
APA StyleTian, Y., Wei, M., Wang, L., Hong, Y., Luo, D., & Sha, Y. (2021). Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters. Materials, 14(24), 7744. https://doi.org/10.3390/ma14247744