Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency
Abstract
:1. Introduction
2. Materials and Methods
3. Steinmetz Losses Estimation
4. Results and Discussion
- – SSE = sum of squares due to error;
- – R-square;
- – RMSE = root mean squared error.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiorillo, F. Measurement and Characterization of Magnetic Materials; Academic Press; Elsevier Science Publishing Co. Inc.: Cambridge, MA, USA, 2004. [Google Scholar] [CrossRef]
- Fish, G.E. Soft magnetic materials. Proc. IEEE 1990, 78, 947–972. [Google Scholar] [CrossRef]
- Wang, S.X.; Sun, N.X.; Yamaguchi, M.; Yabukami, S. Properties of a new soft magnetic material. Nature 2000, 407, 150–151. [Google Scholar] [CrossRef]
- Jansson, P. Soft Magnetic Materials for Ac applications. Powder Metall. 1992, 35, 63–66. [Google Scholar] [CrossRef]
- Petrescu, L.; Cazacu, E.; Ioniţă, V.; Petrescu, C. Comparison between non-oriented silicon iron sheets used for electrical machines. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 524–528. [Google Scholar] [CrossRef]
- Sai Ram, B.; Paul, A.K.; Kulkarni, S.V. Soft magnetic materials and their applications in transformers. J. Magn. Magn. Mater. 2021, 537, 168210. [Google Scholar] [CrossRef]
- Quirke, M.T.; Barrett, J.J.; Hayes, M. Planar magnetic component technology-a review. IEEE Trans. Compon. Hybrids Manuf. Technol. 1992, 15, 884–892. [Google Scholar] [CrossRef]
- Petrescu, L.; Chesca, B.; Cazacu, E.; Petrescu, C. Planar transformer windings losses at different waveforms. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 350–353. [Google Scholar] [CrossRef]
- Somkun, S.; Sato, T.; Chunkag, V.; Pannawan, A.; Nunocha, P.; Suriwong, T. Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter. Energies 2021, 14, 2407. [Google Scholar] [CrossRef]
- Petrescu, L.-G.; Petrescu, M.-C.; Ioniță, V.; Cazacu, E.; Constantinescu, C.-D. Magnetic Properties of Manganese-Zinc Soft Ferrite Ceramic for High Frequency Applications. Materials 2019, 12, 3173. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Yang, Q.; Li, Y.; Zhang, C.; Xu, G. Core loss calculation of the soft ferrite cores in high frequency transformer under non-sinusoidal excitations. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Magambo, J.S.N.T.; Bakri, R.; Margueron, X.; Le Moigne, P.; Mahe, A.; Guguen, S.; Bensalah, T. Planar magnetic components in more electric aircraft: Review of technology and key parameters for DC–DC power electronic converter. IEEE Trans. Transp. Electr. 2017, 3, 831–842. [Google Scholar] [CrossRef]
- Leary, A.M.; Ohodnicki, P.R.; McHenry, M.E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications. JOM 2012, 64, 772–781. [Google Scholar] [CrossRef]
- Mikhalitsyna, E.A.; Kataev, V.A.; Larrañaga, A.; Lepalovskij, V.N.; Kurlyandskaya, G.V. Nanocrystallization in FINEMET-Type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 Thin Films. Materials 2020, 13, 348. [Google Scholar] [CrossRef] [Green Version]
- Radoń, A.; Babilas, R.; Włodarczyk, P.; Zackiewicz, P.; Łukowiec, D.; Polak, M.; Kądziołka-Gaweł, M.; Kolano-Burian, A.; Hawełek, L. Influence of copper addition and heat treatment parameters on nanocrystallization process of Fe-Co-Mo-B-Si amorphous ribbons with high saturation magnetization about 1.6 T. J. Magn. Magn. Mater. 2020, 495, 165951. [Google Scholar] [CrossRef]
- Taylor, R.S.; Unruh, K.M. High temperature magnetic properties of partially re-crystallized cobalt substituted FINEMET-type alloys. Clust. Nanostruct. Interfaces 2000, 235–240. [Google Scholar] [CrossRef]
- Xue, Z.; Li, X.; Sohrabi, S.; Ren, Y.; Wang, W. Magnetic Properties in Finemet-Type Soft Magnetic Toroidal Cores Annealed under Radial Stresses. Metals 2020, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Manivel Raja, M.; Chattopadhyay, K.; Majumdar, B.; Narayanasamy, A. Structure and soft magnetic properties of Finemet alloys. J. Alloys Compd. 2000, 297, 199–205. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Yamauchi, K.; Oguma, S. Fe-Base Soft Magnetic Alloy and Method of Producing Same. European Patent EP0271657A3, 22 June 1988. [Google Scholar]
- Han, J.; Kwon, S.; Sohn, S.; Schroers, J.; Choi-Yim, H. Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio. Metals 2020, 10, 1297. [Google Scholar] [CrossRef]
- Ramin, D.; Riehemann, W. Dependence of magnetic properties of finemet on nanocrystallisation conditions. Nanostruct. Mater. 1999, 12, 867–869. [Google Scholar] [CrossRef]
- Willard, M.R.; Daniil, M. Nanostructured soft magnetic materials. In Nanoscale Magnetic Materials and Applications; Liu, J.P., Fullerton, E., Gutfleisch, O., Sellmyer, D.J., Eds.; Springer Science: New York, NY, USA, 2009. [Google Scholar]
- Hironaka, K.; Uedaira, S. Soft Magnetic Properties of Co-Fe-P and Co-Fe-Sn-P Amorphous Films Formed by Electroplating. IEEE Trans. Magn. 1990, 26, 2421–2423. [Google Scholar] [CrossRef]
- Petrescu, L.; Cazacu, E.; Ioniţă, V.; Petrescu, C. Characterization of soft magnetic materials in a wide range of frequencies. In Proceedings of the 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 28–29 November 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Steinmetz, C.P. On the law of hysteresis. Am. Inst. Electr. Eng. Trans. 1892, 9, 3–64. [Google Scholar] [CrossRef]
- Albach, M.; Dürbaum, T.; Brockmeyer, A. Calculating Core Losses in Transformers for Arbitrary Magnetizing Currents A Comparison of Different Approaches. In Proceedings of the 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, 23–27 June 1996; PESC ‘96 Record. Volume 2, pp. 1463–1468. [Google Scholar] [CrossRef]
- Reinert, J.; Brockmeyer, A.; De Doncker, R.W.A.A. Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Trans. Ind. Appl. 2001, 37, 1055–1061. [Google Scholar] [CrossRef]
- Chen, Y.; Pillay, P. An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation. In Proceedings of the Conference Record of the Industry Applications Conference, 2002, 37th IAS Annual Meeting, Pittsburgh, PA, USA, 13–18 October 2002; Volume 2, pp. 759–766. [Google Scholar] [CrossRef]
- Severns, R. HF-core losses for nonsinusoidal waveforms. Proc. HFPC 1991, 91, 140–148. [Google Scholar]
- Lee, P.K.; Kuo, K.C.; Wu, C.J.; Wong, Z.T.; Yen, J.Y. Prediction of Iron Losses Using the Modified Steinmetz Equation under the Sinusoidal Waveform. In Proceedings of the 2011 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 15–18 May 2011; pp. 579–584. [Google Scholar]
- Sakaki, Y.; Matsuoka, T. Hysteresis Losses in Mn-Zn Ferrite Cores. IEEE Trans. Magn. 1986, 22, 623–625. [Google Scholar] [CrossRef]
- Evangelista, L.; Carvalho, M.A.; Wendhausen, P.A.P. Steinmetz Coefficients’ Prediction Based on Processing Parameters of Soft Magnetic Composites. IEEE Trans. Magn. 2020, 56, 2000205. [Google Scholar] [CrossRef]
- Kollár, P.; Birčáková, Z.; Füzer, J.; Bureš, R.; Fáberová, M. Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 2013, 327, 146–150. [Google Scholar] [CrossRef]
- Petrescu, L.; Ionita, V.; Cazacu, E.; Petrescu, C. Steinmetz’ parameters fitting procedure for the power losses estimation in soft magnetic materials. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; pp. 208–213. [Google Scholar] [CrossRef]
- Bertotti, G. Hysteresis in Magnetism—For Physicists, Materials Scientists, and Engineers; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-093270-2. [Google Scholar] [CrossRef]
- Bertotti, G. General Properties of Power Losses in Soft Ferromagnetic Materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Amar, M.; Protat, F. A Simple Method for Estimation of Power Losses in Silicon Iron Sheet under Alternating Pulse Voltage Excitation. IEEE Trans. Magn. 1994, 30, 942–944. [Google Scholar] [CrossRef]
- Willard, M.a.; Daniil, M.; Kniping, K.E. Nanocrystalline soft magnetic materials at high temperatures: A perspective. Scr. Mater. 2012, 67, 554–559. [Google Scholar] [CrossRef]
- Ferrara, E.; de Luigi, C.; Beatrice, C.; Appino, C.; Fiorillo, F. Energy loss vs. magnetizing frequency in field-annealed nanocrystalline alloys. J. Magn. Magn. Mater. 2000, 215–216, 466–468. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, R.; Muttaqi, K.M.; Sutanto, D. Characterization of amorphous magnetic materials under high-frequency non-sinusoidal excitations. AIP Adv. 2019, 3, 035004. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yan, B.; Chen, C. High frequency core loss behavior of nanocrystalline alloys as magnetic core of switching mode power supply as magnetic core of switching mode power supply. Tongji Daxue Xuebao/J. Tongji Univ. 2006, 34, 1084–1087. [Google Scholar]
- Jiang, C.; Li, X.; Ghosh, S.S.; Zhao, H.; Shen, Y.; Long, T. Nanocrystalline Powder Cores for High-Power High-Frequency Power Electronics Applications. IEEE Trans. Power Electron. 2020, 35, 10821–10830. [Google Scholar] [CrossRef]
- Masood, A.; McCloskey, P.; Mathúna, C.Ó.; Kulkarni, D. Tailoring the ultra-soft magnetic properties of sputtered FineMET thin films for high-frequency power applications. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 903, 012050. [Google Scholar] [CrossRef]
- Bertotti, G.; Fiorillo, F.; Mazzetti, P. Basic principles of magnetization processes and origin of losses in soft magnetic materials (Invited paper). J. Magn. Magn. Mater. 1992, 112, 146–149. [Google Scholar] [CrossRef]
- Li, Z.; Yao, K.; Li, D.; Ni, X.; Lu, Z. Core loss analysis of Finemet type nanocrystalline alloy ribbon withdifferent thickness. Prog. Nat. Sci. Mater. Int. 2017, 27, 588–592. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Yamauchi, K. Induced Magnetic Anisotropy and Thickness Dependence of Magnetic Properties in Nanocrystalline Alloy “Finemet” (Hitachi Metals, Ltd., Japan). IEEE Transl. J. Magn. Jpn. 1990, 5, 1070–1076. [Google Scholar] [CrossRef]
- Najgebauer, M. Scaling-Based Analysis and Modelling of Power Losses in Amorphous and Nanocrystalline Alloys. Acta Phys. Pol. A 2017, 131, 1225–1227. [Google Scholar] [CrossRef]
- Bertotti, G. A general statistical approach to the problem of eddy current losses (invited paper). J. Magn. Magn. Mater. 1984, 41, 253–260. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2009; ISBN 978-0-471-47741-9. [Google Scholar]
- Evaluating Goodness of Fit. Available online: https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html (accessed on 15 August 2021).
B [mT] | kh [-] | ke [-] | ka [-] |
---|---|---|---|
50 | 1.67 × 10−4 | 2.18 × 10−8 | 8.65 × 10−6 |
100 | 2.54 × 10−4 | 2.67 × 10−8 | 1.02 × 10−8 |
200 | 3.90 × 10−4 | 3.54 × 10−8 | 1.20 × 10−8 |
300 | 5.06 × 10−4 | 4.39 × 10−8 | 1.46 × 10−8 |
B [mT] | SSE | R | RMSE |
---|---|---|---|
50 | 2.75 × 10−10 | 0.9945 | 3.59 × 10−6 |
100 | 3.17 × 10−9 | 0.9957 | 1.23 × 10−5 |
200 | 2.76 × 10−7 | 0.9842 | 1.12 × 10−4 |
300 | 2.26 × 10−7 | 0.9973 | 1.04 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrescu, L.-G.; Petrescu, M.-C.; Cazacu, E.; Constantinescu, C.-D. Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency. Materials 2021, 14, 7745. https://doi.org/10.3390/ma14247745
Petrescu L-G, Petrescu M-C, Cazacu E, Constantinescu C-D. Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency. Materials. 2021; 14(24):7745. https://doi.org/10.3390/ma14247745
Chicago/Turabian StylePetrescu, Lucian-Gabriel, Maria-Catalina Petrescu, Emil Cazacu, and Catalin-Daniel Constantinescu. 2021. "Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency" Materials 14, no. 24: 7745. https://doi.org/10.3390/ma14247745
APA StylePetrescu, L. -G., Petrescu, M. -C., Cazacu, E., & Constantinescu, C. -D. (2021). Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency. Materials, 14(24), 7745. https://doi.org/10.3390/ma14247745