In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations
Abstract
:1. Introduction
2. Experimental Methods
2.1. CNx Production Phase
2.2. PES In Situ Analysis
2.3. Langmuir Probe Data Analysis
3. Results and Discussion
He(21S1) + He(23S1) → He2+ + e ΔE = 15.4 eV
He(21S1) + He(21S1) → He2+ + e ΔE = 16.2 eV
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.Y.; Cohen, M.L. Structural properties and electronic structure of low compressibility materials: B-Si3N4 and hypothetical b-C3N4. Phys. Rev. B 1990, 41, 10727–10734. [Google Scholar] [CrossRef]
- Morelli, D.T.; Heremans, J.P. Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett. 2002, 81, 5126–5128. [Google Scholar] [CrossRef]
- Khurshudov, A.; Kato, K.; Sawada, D. Tribological and mechanical properties of carbon nitride thin coating prepared by ion-beam-assisted deposition. Tribol. Lett. 1996, 2, 13–21. [Google Scholar] [CrossRef]
- Broitman, E.; Hellgren, N.; Wänstrand, O.; Johansson, M.P.; Berlind, T.; Sjöström, H.; Sundgren, J.E.; Larsson, M.; Hultman, L. Mechanical and tribological properties of CNx films deposited by reactive magnetron sputtering. Wear 2001, 248, 55–64. [Google Scholar] [CrossRef]
- Gammon, W.J.; Malyarenko, D.I.; Kraft, O.; Hoatson, G.L.; Reilly, A.C.; Holloway, B.C. Hard and elastic amorphous carbon nitride thin films studied by 13C nuclear magnetic resonance spectroscopy. Phys. Rev. B 2002, 66, 153402. [Google Scholar] [CrossRef] [Green Version]
- Hoh, H.Y.; Zhang, Y.; Zhong, Y.L.; Bao, Q. Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Adv. Opt. Mater. 2021, 9, 16. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, S.; Cao, S.; ten Brummelhuis, K.; Völkel, A.; Khamrai, J.; Sharapa, D.I.; Youk, S.; Heil, T.; Tarakina, N.V.; Strauss, V.; et al. Allorganic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. Appl. Catal. B 2021, 285, 119773. [Google Scholar] [CrossRef]
- Ghosh, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 2019, 365, 360. [Google Scholar] [CrossRef] [Green Version]
- Savateev, A.; Antonietti, M. Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catal. 2018, 8, 9790–9808. [Google Scholar] [CrossRef]
- Khamrai, J.; Ghosh, I.; Savateev, A.; Antonietti, M.; König, B. Photo-Ni-Dual-Catalytic C(sp2)-C(sp3) Cross-Coupling Reactions with Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Semiconductor Photocatalyst. ACS Catal. 2020, 10, 3526–3532. [Google Scholar] [CrossRef]
- Mazzanti, S.; Kurpil, B.; Pieber, B.; Antonietti, M.; Savateev, A. Dichloromethylation of enones by carbon nitride photocatalysis. Nat. Commun. 2020, 11, 1387. [Google Scholar] [CrossRef]
- Xiong, W.; Huang, F.; Zhang, R.-Q. Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustain. Energy Fuels 2020, 4, 485–503. [Google Scholar] [CrossRef]
- Kumru, B.; Antonietti, M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv. Colloid Interface Sci. 2020, 283, 102229. [Google Scholar] [CrossRef]
- Cuomo, J.J.; Leary, P.A.; Yu, D.; Reuter, W.; Frisch, M. Reactive sputtering of carbon and carbide targets in nitrogen. J. Vac. Sci. Technol. 1979, 16, 299–302. [Google Scholar] [CrossRef]
- Fujimoto, F.; Ogata, K. Formation of carbon nitride films by means of ion assisted dynamic mixing (ivd) method. Jpn. J. Appl. Phys. 1993, 32, L420–L423. [Google Scholar] [CrossRef]
- Bousetta, A.; Lu, M.; Bensaoula, A.; Schultz, A. Formation of carbon nitride films on Si(100) substrates by electron cyclotron resonance plasma assisted vapor deposition. Appl. Phys. Lett. 1994, 65, 696–698. [Google Scholar] [CrossRef]
- Taki, Y.; Kitagawa, T.; Takai, O. Shielded arc ion plating and structural characterization of amorphous carbon nitride thin films. Thin Solid Film. 1997, 304, 183–190. [Google Scholar] [CrossRef]
- Yap, Y.K.; Kida, S.; Aoyama, T.; Mori, Y.; Sasaki, T. Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 _C. Appl. Phys. Lett. 1998, 73, 915–917. [Google Scholar] [CrossRef]
- Rusop, M.; Abdullah, S.; Podder, J.; Soga, T.; Jimbo, T. Optical and structural properties of nitrogenated diamond-like carbon films prepared by r.f. PECVD. Surf. Rev. Lett. 2006, 13, 1–6. [Google Scholar] [CrossRef]
- Grigorian, G.M.; Kochetov, I.V. Preparation of carbonitride films in the active and afterglow phases of a glow discharge. Plasma Phys. Rep. 2013, 39, 412–419. [Google Scholar] [CrossRef]
- Cometto, O.; Dennett, C.A.; Tsang, S.H.; Short, M.P.; Teo, E.H.T. A thermal study of amorphous and textured carbon and carbon nitride thin films via transient grating spectroscopy. Carbon 2018, 130, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Hellgren, N.; Johansson, M.P.; Broitman, E.; Hultman, L.; Sundgren, J.-E. Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Phys. Rev. B 1999, 59, 5162–5169. [Google Scholar] [CrossRef]
- Escobar-Alarcón, L.; Arrieta, A.; Camps, E.; Muhl, S.; Rodil, S.; Vigueras-Santiago, E. An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 2007, 254, 412–415. [Google Scholar] [CrossRef]
- Herman, I.P. Optical Diagnostics for Thin Film Processing; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Sakurai, K.; Scheer, R.; Kaufmann, C.A.; Yamada, A.; Baba, T.; Kimura, Y.; Matsubara, K.; Fons, P.; Nakanishi, H.; Niki, S. In situ diagnostic methods for thin-film fabrication: Utilization of heat radiation and light scattering. Prog. Photovolt Res. Appl. 2004, 12, 219–234. [Google Scholar] [CrossRef]
- van Duren, S.; Levcenco, S.; Kretzschmar, S.; Just, J.; Unold, T. Investigation of reflectometry for in situ process monitoring and characterization of co-evaporated and stacked Cu-Zn-Sn-S based thin films, Journal of Alloys and Compounds. J. Alloys Compd. 2019, 779, 870–878. [Google Scholar] [CrossRef]
- Singh, S.B.; Chand, N.; Patil, D.S. Langmuir probe diagnostics of microwave electron cyclotron resonance (ECR) plasma. Vacuum 2008, 83, 372–377. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Lancok, J.; Craciun, V. Langmuir Probe Technique for Plasma Characterization during Pulsed Laser Deposition Process. Coatings 2021, 11, 762. [Google Scholar] [CrossRef]
- Kolokolov, N.B.; Blagoev, A.B. Processes of Ionization and Quenching with Creation of Fast Electrons. Usp. Fiz. Nauk 1993, 163, 56–77. (in Russian). Phys. Uspekhi 1993, 36, 152–170. (In English). [Google Scholar] [CrossRef] [Green Version]
- Kolokolov, N.B.; Kudryavtsev, A.A.; Blagoev, A.B. Interaction Processes with Creation of Fast Electrons in the Low Temperature Plasma. Phys. Scr. 1994, 50, 371–402. [Google Scholar] [CrossRef]
- Blagoev, A.B.; Papov, T.; Pilosoff, N.; Ogoyski, A.; Rusinov, I. Investigation of the interactions of long-lived excited atoms in the afterglow of gas discharge plasma. J. Phys. Conf. Ser. 2006, 44, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Sheverev, V.A.; Khromov, N.A.; Kojiro, D.R. Penning ionization electron spectroscopy in glow discharge: Another dimension for gas chromatography detectors. Anal. Chem. 2002, 74, 5556–5563. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.M.-H. Electric Probes in Stationary and Flowing Plasmas: Theory and Application; Springer: New York, NY, USA, 1975. [Google Scholar]
- Capitelli, M.; Celiberto, R.; Colonna, G.; Esposito, F.; Gorse, C.; Hassouni, K.; Laricchiuta, A.; Longo, S. Fundamental Aspects of Plasma Chemical Physics: Kinetics; Springer Series in Atomic, Molecular and Plasma Physics; Springer: New York, USA, 2016; Volume 85. [Google Scholar]
- Raizer, Y.P. Gas. Discharge Physics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Kolokolov, N.B. Chemoinization Processes in Low Temperature Plasma. In Chemistry of the Plasma; Smimov, B.M., Ed.; Energoatomizdat: Moscow, Russia, 1985; p. 56. (In Russian) [Google Scholar]
- Blagoev, A.B.; Kagan, Y.M.; Kolokolov, N.B.; Lyagushchenko, R.I. Finite amplitude distortion of the electron distribution measured by probe current modulation. Zh. Tekh. Fiz 1975, 45, 579–586. (In Russian); Sov. Phys. Tech. Phys. 1975, 20, 360 [Google Scholar]
- Bang, J.Y.; Kim, A.; Chung, C.W. Improved measurement method for electron energy distribution functions with high accuracy and reliability. Phys. Plasmas 2010, 17, 64502. [Google Scholar] [CrossRef]
- Lee, H.C.; Kim, A.; Moon, S.Y. Observation of pressure gradient and related flow rate effect on the plasma parameters in plasma processing reactor. Phys. Plasmas 2011, 18, 23501. [Google Scholar] [CrossRef]
- Vlcek, J.; Rusnak, K.; Hajek, V.; Martinu, L. New Approach to Understanding the Reactive Magnetron Sputtering of Hard Carbon Nitride Films. Diam. Relat. Mater. 2000, 9, 582–586. [Google Scholar] [CrossRef]
- Popov, C.; Plass, M.F.; Bergmaier, A.; Kulisch, W. Synthesis of Carbon Nitride Films by LowPower Inductively Coupled Plasma-Activated Transport Reactions from a Solid Carbon Source. Appl. Phys. 1999, A69, 241–244. [Google Scholar] [CrossRef]
- Pereira, J.; Massereau-Guilbaud, V.; Geraud-Grenier, I.; Plain, A. CH and CN Radical Contribution in the Particle Formation Generated in a Radio-Frequency CH4/N2Plasma. Plasma Process. Polym. 2005, 2, 633–640. [Google Scholar] [CrossRef]
- Sato, G.; Samano, E.C.; Macherro, R.; Farias, M.H.; Cota-Araiza, L. Study of composition and bonding character of CNx films. Appl. Surf. Sci. 2001, 183, 246–258. [Google Scholar] [CrossRef]
- Cappelli, E.; Trucchi, D.M.; Kaciulis, S.; Orlando, S.; Znaza, A.; Mezzi, A. Effect of deposition temperature on chemical composition and electronic properties of amorphous carbon nitride (a-CNx) thin films grown by plasma assisted pulsed laser deposition. Thin Solid Film. 2011, 519, 4059–4063. [Google Scholar] [CrossRef]
- Popov, C.; Zambov, L.M.; Plass, M.F.; Kulisch, W. Optical, electrical and mechanical properties of nitrogen-rich carbon nitride films deposited by inductively coupled plasma chemical vapor deposition. Thin Solid Film. 2000, 377–378, 156–162. [Google Scholar] [CrossRef]
- Grigorian, G.M.; Cenian, A. Formation and Excitation of CN Molecules in He–CO–N2–O2 Discharge Plasmas. Plasma Chem. Plasma Process. 2011, 31, 337–352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorian, G.; Konkol, I.; Cenian, A. In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations. Materials 2021, 14, 7812. https://doi.org/10.3390/ma14247812
Grigorian G, Konkol I, Cenian A. In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations. Materials. 2021; 14(24):7812. https://doi.org/10.3390/ma14247812
Chicago/Turabian StyleGrigorian, Galina, Izabela Konkol, and Adam Cenian. 2021. "In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations" Materials 14, no. 24: 7812. https://doi.org/10.3390/ma14247812
APA StyleGrigorian, G., Konkol, I., & Cenian, A. (2021). In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations. Materials, 14(24), 7812. https://doi.org/10.3390/ma14247812