Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal
Abstract
:1. Introduction
2. Materials and Methods
Materials
3. Results
3.1. Chemical Characterization of the Materials
3.2. pH Effect
- Protonation (−NH3+) amino groups of chitosan (−NH2) under acidic conditions (Equation (13))NaP1CS + H+ ⇄ NaP1CS H+–
- Simultaneously dissociation of dye molecule (D–SO3−), as shown in Equation (14):D–SO3Na ⇄ D–SO3− + Na+
- The electrostatic interactions between NaP1CS H+ and D–SO3− (Equation (15))NaP1CS H+ + D–SO3− ⇄ NaP1CS H+ + O3S–D
3.3. Effect of Initial Concentration
3.4. Kinetic Effect
3.5. Adsorption Isotherms
3.6. Effect of Temperature
3.7. Interfering Ions Effect
3.8. Desorption Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ngah, W.S.W.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef]
- Nair, V.; Panigrahy, A.; Vinu, R. Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 2014, 254, 491–502. [Google Scholar] [CrossRef]
- Rosales, E.; Pazos, M.; Sanromán, M.A.; Tavares, T. Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination 2012, 284, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Lazaridis, N.K. Reactive and basic dyes removal by sorption onto chitosan derivatives. J. Colloid Interface Sci. 2009, 331, 32–39. [Google Scholar] [CrossRef]
- Parsa, J.B.; Golmirzaei, M.; Abbasi, M. Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone-electrolysis process. J. Ind. Eng. Chem. 2014, 20, 689–694. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Pérez-Cruz, M.A.; Mendoza-Castillo, D.I.; Moreno-Virgen, M.R.A. Bonilla-Petriciolet, Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manag. 2013, 116, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Lazaridis, N.K.; Kostoglou, M. On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. J. Colloid Interface Sci. 2013, 407, 432–441. [Google Scholar] [CrossRef]
- Nazari, S.; Yari, A.R.; Mahmodian, M.H.; Reshvanloo, M.T.; Matboo, S.A.; Majidi, G.; Emamian, M. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions. Arch. Hyg. Sci. 2013, 2, 114–120. [Google Scholar]
- Thiam, A.; Brillas, E.; Centellas, F.; Cabot, P.L.; Sirés, I. Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochim. Acta 2015, 173, 523–533. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, Q.; Wang, L. Ultrasensitive electrochemical determination of Ponceau 4R with a novel ϵ-MnO2 microspheres/chitosan modified glassy carbon electrode. Electrochim. Acta 2016, 206, 176–183. [Google Scholar] [CrossRef]
- Song, Y.Z. Electrochemical reduction of C.I. Acid Red 18 on multi-walled carbon nanotubes and its analytical application. Dye. Pigment. 2010, 87, 39–43. [Google Scholar] [CrossRef]
- Tanaka, T. Reproductive and neurobehavioural toxicity study of Ponceau 4R administered to mice in the diet. Food Chem. Toxicol. 2006, 44, 1651–1658. [Google Scholar] [CrossRef]
- Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. J. Hazard. Mater. 2008, 150, 737–746. [Google Scholar] [CrossRef]
- Wang, S.; Ariyanto, E. Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interface Sci. 2007, 314, 25–31. [Google Scholar] [CrossRef]
- Azarian, G.; Nematollahi, D.; Rahmani, A.R.; Godini, K.; Bazdar, M.; Zolghadrnasab, H. Monopolar electro-coagulation process for Azo Dye C. I. Acid Red 18 removal from aqueous solutions. Avicenna J. Environ. Health Eng. 2014, 1, 33–38. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Wang, Z.; Zhang, J.; Duan, X.; Xu, J.; Wen, Y. Trace analysis of Ponceau 4R in soft drinks using differential pulse stripping voltammetry at SWCNTs composite electrodes based on PEDOT:PSS derivatives. Food Chem. 2015, 180, 186–193. [Google Scholar] [CrossRef]
- Gong, J.L.; Zhang, Y.L.; Jiang, Y.; Zeng, G.M.; Cui, Z.H.; Liu, K.; Deng, C.H.; Niu, Q.Y.; Deng, J.H.; Huan, S.Y. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Appl. Surf. Sci. 2015, 330, 148–157. [Google Scholar] [CrossRef]
- Saakshy, A.; Singh, K.; Gupta, A.B.; Sharma, A.K. Fly ash as low cost adsorbent for treatment of effluent of handmade paper industry—Kinetic and modelling studies for direct black dye. J. Clean. Prod. 2016, 112, 1227–1240. [Google Scholar] [CrossRef]
- Xie, J.; Li, C.; Chi, L.; Wu, D. Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water. Fuel 2013, 103, 480–485. [Google Scholar] [CrossRef]
- Bandura, L.; Franus, M.; Józefaciuk, G.; Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 2015, 147, 100–107. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Kamash, A.M.; El-Dessouky, M.I.; Ghonaim, A.K. Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 2008, 154, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Koshy, N.; Singh, D.N. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 2016, 4, 1460–1472. [Google Scholar] [CrossRef]
- Panek, R.; Medykowska, M.; Wiśniewska, M.; Szewczuk-Karpisz, K.; Jędruchniewicz, K.; Franus, M. Simultaneous Removal of Pb2+ and Zn2+ Heavy Metals Using Fly Ash Na-X Zeolite and Its Carbon Na-X(C) Composite. Materials 2021, 14, 2832. [Google Scholar] [CrossRef] [PubMed]
- Panek, R.; Medykowska, M.; Szewczuk-Karpisz, K.; Wiśniewska, M. Comparison of Physicochemical Properties of Fly Ash Precursor, Na-P1(C) Zeolite–Carbon Composite and Na-P1 Zeolite—Adsorption Affinity to Divalent Pb and Zn Cations. Materials 2021, 14, 3018. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Kawka, J.; Płaziński, W.; Panek, R.; Madej, J. Sorption of Heavy Metal Ions of Chromium, Manganese, Selenium, Nickel, Cobalt, Iron from Aqueous Acidic Solutions in Batch and Dynamic Conditions on Natural and Synthetic Aluminosilicate Sorbents. Materials 2020, 13, 5271. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.S.W.; Teong, L.C.; Toh, R.H.; Hanafiah, M.A.K.M. Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites. Chem. Eng. J. 2013, 223, 231–238. [Google Scholar] [CrossRef]
- De Alvarenga, E.S.; de Oliveira, C.P.; Bellato, C.R. An approach to understanding the deacetylation degree of chitosan. Carbohydr. Polym. 2010, 80, 1155–1160. [Google Scholar] [CrossRef]
- ANešić, R.; Veličković, S.J.; Antonović, D.G. Modification of chitosan by zeolite A and adsorption of Bezactive Orange 16 from aqueous solution. Compos. Part B Eng. 2013, 53, 145–151. [Google Scholar] [CrossRef]
- Vieira, M.L.G.; Esquerdo, V.M.; Nobre, L.R.; Dotto, G.L.; Pinto, L.A.A. Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J. Ind. Eng. Chem. 2014, 20, 3387–3393. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Lan, W.; Wang, T.; Luo, G. Microfluidic production of porous chitosan/silica hybrid microspheres and its Cu(II) adsorption performance. Chem. Eng. J. 2013, 229, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhai, Y.Y.; Gao, Q.; Luo, W.J.; Xia, H.; Zhou, C.G. Highly efficient removal of Acid Red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube: Batch study, isotherms, kinetics, and thermodynamics. J. Chem. Eng. Data 2014, 59, 39–51. [Google Scholar] [CrossRef]
- Muir, B.; Matusik, J.; Bajda, T. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features. Appl. Surf. Sci. 2016, 361, 242–250. [Google Scholar] [CrossRef]
- Kunecki, P.; Panek, R.; Koteja, A.; Franus, W. Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous Mesoporous Mater. 2018, 266, 102–108. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Ju, Y.; Franus, M.; Franus, W. Zeolite NaP1 functionalization for the sorption of metal complexes with biodegradable N-(1,2-dicarboxyethyl)-D,L-aspartic acid. Materials 2021, 14, 2518. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Xu, X.; Xing, L.; Han, S.; Duan, P.; Song, W.; Jia, R. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour. Technol. 2016, 210, 123–130. [Google Scholar] [CrossRef]
- Hor, K.Y.; Chee, J.M.C.; Chong, M.N.; Jin, B.; Saint, C.; Poh, P.E.; Aryal, R. Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater. J. Clean. Prod. 2016, 118, 197–209. [Google Scholar] [CrossRef]
- Subbaiah, M.V.; Kim, D.S. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Saf. 2016, 128, 109–117. [Google Scholar] [CrossRef]
- Alzaydien, A.S.; Manasreh, W. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto activated phosphate rock. Int. J. Phys. Sci. 2009, 4, 172–181. [Google Scholar]
- Boyaci, E.; Eroǧlu, A.E.; Shahwan, T. Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination. Talanta 2010, 80, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhan, Y. Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem. Eng. J. 2012, 200–202, 202–213. [Google Scholar] [CrossRef]
- Ahmad, M.; Manzoor, K.; Venkatachalam, P.; Ikram, S. Kinetic and thermodynamic evaluation of adsorption of Cu(II) by thiosemicarbazide chitosan. Int. J. Biol. Macromol. 2016, 92, 910–919. [Google Scholar] [CrossRef]
- Azlan, K.; Saime, W.N.W.; Liew, L.A.I. Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 2009, 21, 296–302. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Guo, X.; Huang, H. Adsorption of chromium(III) on lignin. Bioresour. Technol. 2008, 99, 7709–7715. [Google Scholar] [CrossRef] [PubMed]
- Behnamfard, A.; Salarirad, M.M.; Vegliò, F. Removal of Zn(II) ions from aqueous solutions by ethyl xanthate impregnated activated carbons. Hydrometallurgy 2014, 144–145, 39–53. [Google Scholar] [CrossRef]
- Shokoohi, R.; Vatanpoor, V.; Zarrabi, M.; Vatani, A. Adsorption of acid red 18 (AR18) by activated carbon from poplar wood—A kinetic and equilibrium study. E-J. Chem. 2010, 7, 65–72. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Teong, L.C.; Toh, R.H.; Hanafiah, M.A.K.M. Utilization of chitosan-zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies. Chem. Eng. J. 2012, 209, 46–53. [Google Scholar] [CrossRef]
- Liao, B.; Sun, W.Y.; Guo, N.; Ding, S.L.; Su, S.J. Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids Surf. A Physicochem. Eng. Asp. 2016, 501, 32–41. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Molecular formula | C20H11N2Na3O10S3 |
Molecular weight, g/mol | 604.5 |
COD of 1 g AR18, mg/L | 597 ± 17 |
max, nm | 507 |
Chemical structure |
Parameter | NaP1 | NaP1CS | NaP1H |
---|---|---|---|
SBET (m2/g) | 94 | 53 | 29 |
Vmic a (cm3/g) | 0.005 | 0.004 | 0.003 |
Smic a (m2/g) | 16.0 | 10.7 | 8.34 |
Vtot b (cm3/g) | 0.28 | 0.13 | 0.11 |
Dav c (Å) | 109.1 | 111.7 | 65.4 |
Adsorbent | Adsorbate | C0 (mg/L) | qe, exp, (mg/g) | Kinetic Model | Kinetic Parameters | ||
---|---|---|---|---|---|---|---|
pseudo first order | qmax (mg/g) | k1 (h−1) | R2 | ||||
NaP1 | AR18 | 50 100 | 2.18 5.30 | 3.96 2.73 | 0.025 0.023 | 0.75 0.96 | |
Cu(II) | 50 100 | 9.91 19.60 | 18.85 2.23 | 0.005 0.035 | 0.80 0.94 | ||
NaP1CS | AR18 | 50 100 | 9.94 19.83 | 1.78 1.84 | 0.012 0.022 | 0.87 0.73 | |
Cu(II) | 50 100 | 9.98 19.30 | 99.43 4.05 | 0.023 0.043 | 0.58 0.98 | ||
pseudo second order | qmax (mg/g) | k2 (g/mg h) | R2 | ||||
NaP1 | AR18 | 50 100 | 2.18 5.30 | 2.18 5.39 | 0.630 0.029 | 1.00 0.99 | |
Cu(II) | 50 100 | 9.91 19.60 | 9.91 19.61 | 1.371 0.406 | 1.00 1.00 | ||
NaP1CS | AR18 | 50 100 | 9.94 19.83 | 9.93 19.84 | 0.173 0.029 | 0.99 1.00 | |
Cu(II) | 50 100 | 9.98 19.30 | 9.98 19.39 | 16.632 0.045 | 1.00 0.99 | ||
intra-particle diffusion | ki (mg/g·min0.5) | C (mg/g) | R2 | ||||
NaP1 | AR18 | 50 100 | 2.18 5.30 | 0.243 0.276 | 1.35 2.45 | 0.97 0.90 | |
Cu(II) | 50 100 | 9.91 19.60 | 0.003 0.265 | 9.85 18.71 | 0.81 0.99 | ||
NaP1CS | AR18 | 50 100 | 9.94 19.83 | 0.111 0.425 | 9.13 18.27 | 0.90 0.99 | |
Cu(II) | 50 100 | 9.98 19.30 | 0.028 1.011 | 9.91 14.11 | 0.99 0.97 |
Adsorbate | Isotherm | T (K) | Parameters | |||
---|---|---|---|---|---|---|
AR18 | Langmuir | qm (mg/g) | KL (L/mg) | R2 | RL | |
293 | 74.61 | 0.390 | 0.98 | 0.093 | ||
Cu(II) | 36.04 | 0.051 | 0.98 | 0.440 | ||
AR18 | 313 | 81.33 | 0.355 | 0.98 | 0.101 | |
Cu(II) | 39.47 | 0.090 | 0.97 | 0.307 | ||
AR18 | 333 | 123.63 | 0.189 | 0.87 | 0.175 | |
Cu(II) | 46.22 | 0.169 | 0.98 | 0.192 | ||
AR18 | Freundlich | Kf (mg/g) | n | R2 | ||
293 | 16.43 | 2.48 | 0.53 | |||
Cu(II) | 7.67 | 3.57 | 0.98 | |||
AR18 | 313 | 18.41 | 1.96 | 0.88 | ||
Cu(II) | 9.48 | 3.67 | 0.96 | |||
AR18 | 333 | 18.38 | 1.38 | 0.97 | ||
Cu(II) | 15.16 | 4.59 | 0.80 | |||
AR18 | Dubinin-Radushkevich | qs (mg/g) | B (mol2/kJ2) | R2 | E (kJ/mol) | |
293 | 0.003 | 0.0033 | 0.52 | 12.344 | ||
Cu(II) | 1200.354 | 0.0025 | 0.98 | 14.031 | ||
AR18 | 313 | 0.007 | 0.0041 | 0.91 | 11.024 | |
Cu(II) | 1056.565 | 0.0024 | 0.97 | 14.469 | ||
AR18 | 333 | 0.017 | 0.0054 | 0.97 | 9.659 | |
Cu(II) | 1008.093 | 0.0018 | 0.80 | 16.789 |
Adsorbent | Adsorbate | ΔH° (kJ/mol) | ΔS° (J/mol K) | ΔG° (kJ/mol) | ||
293 K | 313 K | 333 K | ||||
NaP1CS | AR18 | 29.84 | 106.3 | −18.37 | −20.88 | −24.99 |
Cu(II) | 12.49 | 26.4 | −2.15 | −13.57 | −5.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bień, T.; Kołodyńska, D.; Franus, W. Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal. Materials 2021, 14, 7817. https://doi.org/10.3390/ma14247817
Bień T, Kołodyńska D, Franus W. Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal. Materials. 2021; 14(24):7817. https://doi.org/10.3390/ma14247817
Chicago/Turabian StyleBień, Tomasz, Dorota Kołodyńska, and Wojciech Franus. 2021. "Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal" Materials 14, no. 24: 7817. https://doi.org/10.3390/ma14247817
APA StyleBień, T., Kołodyńska, D., & Franus, W. (2021). Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal. Materials, 14(24), 7817. https://doi.org/10.3390/ma14247817