Nanotechnology in Fire Protection—Application and Requirements
Abstract
:1. Fire Protection—Introduction
2. Legal Requirements
- -
- Loadbearing capacity (R)—ability of the trial element of the load-bearing structure element to support the test load without exceeding certain criteria in terms of both the magnitude and the rate of deflection.
- -
- Integrity (E)—ability of a test piece separating building structure elements to prevent the passage of flames and hot gases and to prevent the appearance of flames on an unheated surface.
- -
- Thermal Insulation (I)—ability of a test piece separating structural elements, when exposed to fire on one side, to limit the rise in temperature of the unheated surface below specified levels.
- -
3. Nanomaterials in Personal Protection
- -
- Protecting against minimal risks (Category I).
- -
- Protecting against a specific factor that does not threaten life or health and does not cause permanent damage to the health of the employee (Category II).
- -
- Specialist clothing, the task of which is to protect against factors that may cause the most dangerous consequences for the worker, and the direct effects of which cannot be identified in a timely manner, protective clothing of complex construction to protect against the threat to life or health of the worker, including a firefighter (Category III) [26].
- -
- Fire, hot air, heat radiation, hot water, and steam. High or low temperature.
- -
- Chemicals, including foaming agents.
- -
- Gases generated during combustion or leaking from the installation.
- -
- Biological agents such as viruses, bacteria, and dangerous organisms.
- -
- Other elements such as glass, metal, sharp objects, and electric discharges [28].
3.1. Protective Clothing
3.2. Respiratory System
4. Nanostructures in Tools in Fire Protection
4.1. Smoke Detectors
- -
- clean CNF.
- -
- CNF loaded with metal nanoparticles (NPs).
- -
- CNF loaded with metal oxides nanoparticles (NPMOs).
- -
- CNF loaded with metal alloys.
- -
- other [81].
4.2. Extinguishing
5. Nanoadditives in Industrial Products
5.1. Carbon and Halloysite Nanotubes as Nanoadditives
5.2. Nanoparticles of Silica as Nanoadditives
5.3. Substances with a Layered or Coniferous Structure as Nanoadditives
5.4. Examples of the Use of Nanoadditives in Industrial Products
6. The Hazards of Nanosubstances
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAM | Acrylamide |
AATCC | American Association of Textile Chemists and Colorists |
BBB | Blood-Brain Barrier |
CCOHS | Canadian Center for Occupational Health and Safety |
CEA | The European Insurance and Reinsurance Federation |
CFPA | Europe—Confederation of Fire Protection Associations Europe |
CNF | Carbon Nanofibers |
DWNT | Double-Wall Carbon Nanotubes |
EN | European Standard |
EOTA | European Organization for Technical Approvals |
ETA | European Technical Assessments |
ETAG | European Technical Approval Guideline |
EU | European Union |
FPC | Firefighter’s Protective Clothing |
FR-GT | Flame-Resistant Gel/Textiles |
FRT | Flame-Resistant Textiles |
LOI | Limited Oxygen Index |
MEC | Minimum Explosible Concentration |
MFB | Metropolitan Fire Brigade |
MMT | Montmorillonite |
MPIA | Poly(m-phenylene isophthalamide) |
NFPA | National Fire Protection Association |
NIOSH | US National Institute for Occupational Safety and Health |
NPMOs | Metal Oxides Nanoparticles |
NPMs | Metal Nanoparticles |
NPs | Nanoparticles |
OSHA | Occupational Safety and Health Administration |
PAAM | Polyacrylamide |
PC/PDMS | Polycarbonate/Polydimethylsiloxane |
PCM | Phase-Change Materials |
PDMS | Polydimethylsiloxane |
PD-T, PPDT, or PPTA | Poly(m-phenylene terephthalamide) |
PEGDA | Polyethylene Glycol Diacrylate |
PMC | Polymer Matrix Composites |
PN-EN | Polish Standard implementing the European Standard |
POSS | Polysilsesquioxanes |
PPD-T | Poly(p-phenylene terephthalamide) |
PPE | Personal Protective Equipment |
PTFE | Polytetrafluoroethylene |
QD-LED | Quantum Dot Light Emitting Device |
REI | Fire Resistance |
REL | Recommended Exposure Limit |
rGO | Reduced Graphene Oxide |
SMM | Shape Memory Materials |
VdS | VdS Schadenverhütung GmbH |
VOC | Volatile Organic Compound |
References
- Safeopia, Fire Protection. 2018. Available online: https://www.safeopedia.com/definition/193/fire-protection (accessed on 20 November 2021).
- Available online: https://www.nfpa.org/ (accessed on 12 December 2021).
- Available online: https://www.ccohs.ca/ (accessed on 12 December 2021).
- Available online: https://www.pilz.com/pl-PL/support/knowhow/law-standards-norms/international-standards/north-america (accessed on 20 November 2021).
- Available online: https://www.eota.eu/ (accessed on 12 December 2021).
- Available online: https://cfpa-e.eu/ (accessed on 12 December 2021).
- PU Europe. Fire Handbook, European Fire Standards, and National Legislation. 2020. Available online: http://highperformanceinsulation.eu/wp-content/uploads/2020/10/PU-Europe-Fire-Safety-Handbook-_-European-fire-standards-and-national-legislation-_June-2020.pdf (accessed on 20 November 2021).
- Available online: https://www.gov.pl/web/kgpsp-en (accessed on 12 December 2021).
- The Act of 24 November 1991–The Act on Fire Protection. No. 81, Item 351 (Dz. U. 1991 Nr 81 Poz. 351). Poland. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19910810351 (accessed on 20 November 2021).
- OSHA. 1910.156-Fire Brigades. GPO Source e-CFR. Occupational Safety and Health Standards. December 2008. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.156 (accessed on 20 November 2021).
- National Fire Protection Association. NFPA 1977, Standard on Protective Clothing and Equipment for Wildland Fire Fighting and Urban Interface Fire Fighting; National Fire Protection Association: Quincy, MA, USA, 2021. [Google Scholar]
- National Fire Protection Association. NFPA 1, Fire Code; National Fire Protection Association: Quincy, MA, USA, 2021. [Google Scholar]
- National Fire Protection Association. NFPA 1901, Standard for Automotive Fire Apparaturs; National Fire Protection Association: Quincy, MA, USA, 2016. [Google Scholar]
- National Fire Protection Association. NFPA 13, Standard for the Installation of Sprinkler Systems; National Fire Protection Association: Quincy, MA, USA, 2021. [Google Scholar]
- National Fire Protection Association. NFPA 35, Standard for the Manufacture of Organic Coatings; National Fire Protection Association: Quincy, MA, USA, 2020. [Google Scholar]
- The Confederation of Fire Protection Associations Europe. CFPA E Guideline No 18 2013 F, Fire Protection on Chemical Manufacturing Sites; CFPA EUROPE: Moreton-in-Marsh, UK, 2013. [Google Scholar]
- The Confederation of Fire Protection Associations Europe. CFPA-E Guideline No 21:2021 F, Fire Prevention on Construction Sites; CFPA EUROPE: Moreton-in-Marsh, UK, 2021. [Google Scholar]
- EN 13501-1:2018, Fire Classification of Construction Products and Building Elements-Part 1: Classification Using Data from Reaction to Fire Tests; SIST: Ljubljana, Slovenia, 2018.
- ETAG 018, Guideline for European Technical Approval of Fire Protective Products; EOTA: Wien, Austria, 2013.
- EN 469: Protective Clothing for Firefighters-Performance Requirements for Protective Clothing for Firefighting Activities; SIST: Ljubljana, Slovenia, 2018.
- EN 14325: Protective Clothing Against Chemicals-Test Methods and Performance Classification of Chemical Protective Clothing Materials, Seams, Joins and Assemblage; SIST: Ljubljana, Slovenia, 2018.
- Wfrgent Nv Global Safety. Fire Resistance Classes. Available online: https://www.wfrgent.com/en/fire-resistance/fire-resistance-classes.html (accessed on 20 November 2021).
- EN 13501-2:2016 Fire Classification of Construction Products and Building Elements-Part 2: Classification Using Data from Fire Resistance Tests, Excluding Ventilation Services; SIST: Ljubljana, Slovenia, 2016.
- Commission Regulation (EU) 2020/878 of 18 June 2020 amending Annex II to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Off. J. Eur. Union 2020, 203, 28–58.
- Pavlicek, A.; Part, F.; Rose, G.; Praetorius, A.; Miernicki, M.; Gazsó, A.; Huber-Humer, M. A European nano-registry as a reliable database for quantitative risk assessment of nanomaterials? A comparison of national approaches. NanoImpact 2021, 21, 100276. [Google Scholar] [CrossRef]
- Regulation (EU) 2016/425 of the European Parliament and of the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC (Text with EEA relevance). Off. J. Eur. Union 2016, 81, 51–98.
- Park, H.; Park, J.; Lin, S.-H.; Boorady, L.M. Assessment of Firefighters’ needs for personal protective equipment. Fash. Text. 2014, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Song, G. Thermal Protective Clothing for Firefighters; Elseviser: Amsterdam, The Netherlands, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Song, G.; Lu, Y. Flame resistant textiles for structural and proximity fire fighting. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing Limited: Sawston, UK, 2013; Chapter 19; pp. 520–548. [Google Scholar] [CrossRef]
- Trigo-Lopez, M.; Garcia, J.M.; Ruiz, J.A.R.; Garcia, F.C.; Ferrer, R. Aromatic Polyamides. Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–51. [Google Scholar] [CrossRef]
- IMATTEC, International Materiaux et Textilles Techniques. Aramids and Their Properties. Available online: https://imattec.com/en/aramids.php (accessed on 20 November 2021).
- Polymer Properties Database. Aramid Fibers. Chemical Retrieval on the Web CROW 2015–2021. Available online: https://polymerdatabase.com/Fibers/Aramid.html (accessed on 20 November 2021).
- Morgan, A.B. Flame Retardant Fiber-Reinforced Composites. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing Limited: Sawston, UK, 2013; Chapter 23; pp. 623–652. [Google Scholar] [CrossRef]
- Bourbigot, S. Flame retardancy of textiles: New approaches. In Advances in Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing Limited: Sawston, UK, 2008; pp. 9–40. [Google Scholar]
- Mandal, S.; Camenzind, M.; Annaheim, S.; Rossi, R.M. Firefighters’ Protective Clothing and Equipment. Firef. Cloth. Equip. 2018, 2, 31–59. [Google Scholar] [CrossRef]
- Samanta, A.K.; Baghchi, A.; Biswas, S.K. Fire retardant finishing of jute fabric and its thermal behaviour using phosphorous and nitrogen based compound. J. Polym. Mater. 2011, 28, 149–169. [Google Scholar]
- Tsukada, M.; Khan, M.R.; Tanaka, T.; Morikawa, H. Thermal characteristics and physical properties of silk fabrics grafted with phosphorous flame retardant agents. Text. Res. J. 2011, 81, 1541–1548. [Google Scholar] [CrossRef]
- Kundu, C.K.; Li, Z.; Song, L.; Hu, Y. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. Eur. Polym. J. 2020, 137, 109911. [Google Scholar] [CrossRef]
- Shaid, A.; Wang, L.; Padhye, R.; Bhuyian, M.A.R. Aerogel nonwoven as reinforcement and batting material for firefighter’s protective clothing: A comparative study. J. Sol-Gel Sci. Technol. 2018, 87, 95–104. [Google Scholar] [CrossRef]
- Liu, X.X.; Lin, L.T.; Wang, X.D.; Zheng, H.Q. Study on temperature response and thermal protection of shape memory com-bination fabrics. In Textile Bioengineering and Informatics Symposium Proceedings 2011, Beijing, China, 27–29 May 2011; Li, Y., Luo, X.N., Liu, Y.F., Eds.; Textile Bioengineering and Informatics Society: Hong Kong, China, 2011; pp. 230–236. [Google Scholar]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Byrne, M.T.; Gun’Ko, Y.K. Recent Advances in Research on Carbon Nanotube-Polymer Composites. Adv. Mater. 2010, 22, 1672–1688. [Google Scholar] [CrossRef]
- Paul, D.; Robeson, L. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Morgan, A.B. Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 2006, 17, 206–217. [Google Scholar] [CrossRef]
- Dadi, H.H. Literature Overview of Smart Textiles. Master’s Thesis, Swedish School of Textiles, University of Borås, Borås, Sweden, 2010. [Google Scholar]
- Chitrphiromsri, P.; Kuznetsov, A.V.; Song, G.; Barker, R.L. Investigation of Feasibility of Developing Intelligent Firefighter-Protective Garments Based on the Utilization of a Water-Injection System. Numer. Heat Transf. Part A Appl. 2006, 49, 427–450. [Google Scholar] [CrossRef]
- Mandal, S.; Annaheim, S.; Greve, J.; Camenzind, M.; Rossi, R.M. Modeling for predicting the thermal protective and thermo-physiological comfort performance of fabrics used in firefighters’ clothing. Text. Res. J. 2019, 89, 2836–2849. [Google Scholar] [CrossRef]
- Lessan, F.; Montazer, M.; Moghadam, M. A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano TiO2 and maleic acid. Thermochim. Acta 2011, 520, 48–54. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, C.Q. Flame retardant finishing of cotton fleece fabric: Part, V. Phosphorus-containing maleic acid oligomers. Fire Mater. 2009, 33, 365–375. [Google Scholar] [CrossRef]
- Joseph, P.; Tretsiakova-McNally, S. Chemical modification of natural and synthetic textile fibres to improve flame retardancy. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing Limited: Sawston, UK, 2013; Chapter 3; pp. 1–31. [Google Scholar] [CrossRef]
- Krzemińska, S.; Hryny, K.R.; Pietrowski, P. Possible application of nanomaterials in personal protective equipment. Work. Saf. Sci. Pract. 2009, 5, 7–9. [Google Scholar]
- Nie, Y.; Mugaanire, I.T.; Guo, Y.; Wang, R.; Hou, K.; Zhu, M. A hybrid hydrogel/textile composite as flame-resistant dress. Prog. Nat. Sci. 2021, 31, 33–40. [Google Scholar] [CrossRef]
- Illeperuma, W.R.K.; Rothemund, P.; Suo, Z.; Vlassak, J.J. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives. ACS Appl. Mater. Interfaces 2016, 8, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Niraj, S.; Jiazhi, M.; Yeow, J.T.W. Carbon Nanotube-Based Sensors. J. Nanosci. Nanotechnol. 2006, 6, 573–590. [Google Scholar]
- Kim, S.C.; Kang, S.; Lee, H.; Kwak, D.-B.; Ou, Q.; Pei, C.; Pui, D.Y. Nanofiber Filter Performance Improvement: Nanofiber Layer Uniformity and Branched Nanofiber. Aerosol Air Qual. Res. 2020, 20, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Rabajczyk, A.; Zielecka, M.; Porowski, R.; Hopke, P.K. Metal nanoparticles in the air: State of the art and future perspectives. Environ. Sci. Nano 2020, 7, 3233–3254. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.; Han, Y.; Jiang, Q.; Zhan, C.; Zhang, K.; Li, Z.; Zhang, R. Structural design and environmental applications of electrospun nanofibers. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106009. [Google Scholar] [CrossRef]
- Wang, S.-X.; Yap, C.C.; He, J.; Chen, C.; Wong, S.Y.; Li, X. Electrospinning: A facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol. Rev. 2016, 5, 51–73. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.-Z.; Li, J.; Liang, D.-L.; Huang, D.-L.; Qu, D.; Huang, Y.-M. Surface modification of a granular activated carbon by dielectric barrier discharge plasma and its effects on pentachlorophenol adsorption. J. Electrost. 2013, 71, 689–694. [Google Scholar] [CrossRef]
- Vallfirest. Protection against CO, Formaldehyde, NOx, VOCs and Particles for Wildland Firefighters. In Proceedings of the 16th International Wildland Fire Safety Summit, 6th Human Dimensions of Wildland Fire Conference, Online, 24–27 May 2021.
- Xtreme Mask, The Latest Advance in Respiratory Protection for Wildfires. Vallfirest–Wildland. News. 2020. Available online: https://wildlandfirefighter.com/2020/07/17/xtreme-mask-the-latest-advance-in-respiratory-protection-for-wildfires/ (accessed on 20 November 2021).
- Wood, V.; Bulović, V. Colloidal quantum dot light-emitting devices. Nano Rev. 2010, 1, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Zhang, S.; Wang, Z.; Adamo, G.; Liu, H.; Huang, Y.; Couteau, C.; Soci, C. GaAs/AlGaAs Nanowire Photodetector. Nano Lett. 2014, 14, 2688–2693. [Google Scholar] [CrossRef] [Green Version]
- Klekachev, A.V.; Nourbakhsh, A.; Asselberghs, I.; Stesmans, A.L.; Heyns, M.M.; De Gendt, S. Graphene Transistors and Photodetectors. Electrochem. Soc. Interface 2013, 22, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Niu, L.; Zheng, Z.; Yan, F. Photosensitive Graphene Transistors. Adv. Mater. 2014, 26, 5239–5273. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Song, J. Significant Photoelectric Property Change Caused by Additional Nano-confinement: A Study of Half-Dimensional Nanomaterials. Small 2014, 10, 5042–5046. [Google Scholar] [CrossRef]
- Pradhan, B.; Setyowati, K.; Liu, H.; Waldeck, D.H.; Chen, J. Carbon Nanotube−Polymer Nanocomposite Infrared Sensor. Nano Lett. 2008, 8, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, X.; Dong, C.; Yan, X.; He, G. Fabrication of a visible light detector based on a coaxial polypyrrole/TiO2 nanorod heterojunction. RSC Adv. 2014, 4, 44868–44871. [Google Scholar] [CrossRef]
- Kotter, D.K.; Novack, S.D.; Slafer, W.D.; Pinhero, P. Solar Nantenna Electromagnetic Collectors. In Solar Thermal and Photovoltaic Power, Proceedings of the ASME 2008 2nd International Conference on Energy Sustainability, Jacksonville, FL, USA, 10–14 August 2008; American Society of Mechanical Engineers: New York, NY, USA, 2008; Volume 2, pp. 409–415. [Google Scholar]
- Fang, Z.; Liu, Z.; Wang, Y.; Ajayan, P.M.; Nordlander, P.; Halas, N. Graphene-Antenna Sandwich Photodetector. Nano Lett. 2012, 12, 3808–3813. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Sengar, M.; Kumari, P. Gold-carbonaceous materials based heterostructures for gas sensing applications. RSC Adv. 2021, 11, 13674–13699. [Google Scholar] [CrossRef]
- Ryan, T.J.; Arnold, K.J. Residential Carbon Monoxide Detector Failure Rates in the United States. Am. J. Public Health 2011, 101, e15–e17. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Akbari, E.; Buntat, Z.; Ahmad, M.H.; Enzevaee, A.; Yousof, R.; Iqbal, S.M.Z.; Ahmadi, M.T.; Sidik, M.A.B.; Karimi, H. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors 2014, 14, 5502–5515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulla, K.K.; Farajian, A.A. Concentration Effects of Carbon Oxides on Sensing by Graphene Nanoribbons: Ab Initio Modeling. J. Phys. Chem. C 2013, 117, 12815–12825. [Google Scholar] [CrossRef]
- Osborn, T.H.; Farajian, A.A. Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res. 2014, 7, 945–952. [Google Scholar] [CrossRef]
- Olawoyin, R. Nanotechnology: The future of fire safety. Saf. Sci. 2018, 110, 214–221. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Wang, J.; Yu, A.; Wei, G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials 2019, 9, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, L.-S.; Wang, Q.; Yu, Y.; Chen, Z.; Cao, C.-Y.; Song, W.-G. Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases. J. Mater. Chem. 2012, 22, 15342–15347. [Google Scholar] [CrossRef]
- Zhang, J.T.; Zhu, Z.J.; Chen, C.M.; Chen, Z.; Cai, M.Q.; Qu, B.H.; Wang, T.H.; Zhang, M. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors. Nanotechnology 2018, 29, 275501. [Google Scholar] [CrossRef]
- Claramunt, S.; Monereo, O.; Boix, M.; Leghrib, R.; Prades, J.D.; Cornet, A.; Merino, P.; Merino, C.; Cirera, A. Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibers. Sens. Actuators B Chem. 2013, 187, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kwon, O.S.; Shin, D.H.; Jang, J. WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 2013, 1, 9099–9106. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Kim, J.-H.; Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review. J. Korean Ceram. Soc. 2017, 54, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Katoch, A.; Choi, S.-W.; Sun, G.-J.; Kim, H.W.; Kim, S.S. Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core–shell nanofiber. Nanotechnology 2014, 25, 175501. [Google Scholar] [CrossRef]
- Lee, J.-H.; Katoch, A.; Choi, S.-W.; Kim, J.-H.; Kim, H.W.; Kim, S.S. Extraordinary Improvement of Gas-Sensing Performances in SnO2 Nanofibers Due to Creation of Local p–n Heterojunctions by Loading Reduced Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2015, 7, 3101–3109. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Qu, F.; Liu, J.; Zhu, L.; Zhu Lin, Y.; Wang, Y.; Li, F.; Zhou, J.; Ruan, S. Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunction with Different NiO Content and Its Influence on Trimethylamine Sensing Properties. Sens. Actuators B 2015, 207, 90–96. [Google Scholar] [CrossRef]
- Fink, M.; Harms, R.; Hatak, I. Nanotechnology and Ethics: The Role of Regulation Versus Self-Commitment in Shaping Researchers’ Behavior. J. Bus. Ethics 2012, 109, 569–581. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; He, Y.; Hu, Y.; Gu, H.; Wang, Y. Piezoelectric Nanowires in Energy Harvesting Applications. Adv. Mater. Sci. Eng. 2015, 2015, 1–21. [Google Scholar] [CrossRef] [Green Version]
- United States National Nanotechnology Initiative (US NNI). Available online: https://www.nano.gov/ (accessed on 12 November 2021).
- Kogut, D. Final Report for the Fire Extinguishing Performance Test of the Low Global Warming Potential (GWP) Agents. Report No ATC-12480. U.S. Army Aberdeen Test Center Aberdeen Proving Ground, MD 21005-5059; U.S. Army Ground Vehicle Systems Center (GVSC) Warren, MI 48397-5000. U.S. Army Aviation and Missile Command/Program Executive Office (PEO), Aviation Redstone Arsenal, AL 35898-5000. 2019. Available online: https://apps.dtic.mil/sti/pdfs/AD1079726.pdf (accessed on 12 November 2021).
- Łukaszczuk, P. Zastosowanie nanotechnologii w ochronie przeciwpożarowej. Bezp. Tech. Pożar. 2016, 42, 95–102. [Google Scholar] [CrossRef]
- Quintiere, J.G. Fundamentals of Fire Phenomena; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; p. 456. [Google Scholar]
- Han, Z.; Zhang, Y.; Du, Z.; Xu, F.; Li, S.; Zhang, J. New-type gel dry-water extinguishants and its effectiveness. J. Clean. Prod. 2017, 166, 590–600. [Google Scholar] [CrossRef]
- Martin, T.J. Fire-Fighting Foam Technology. In Foam Engineering: Fundamentals and Applications; Stevenson, P., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 411–457. [Google Scholar]
- Du, D.; Shen, X.; Feng, L.; Hua, M.; Pan, X. Efficiency characterization of fire extinguishing compound superfine powder containing Mg (OH). J. Loss Prev. Process. Ind. 2019, 57, 73–80. [Google Scholar] [CrossRef]
- Leng, N.B.; Wang, S.X.; Han, P. Development of New Fire Extinguishing Agent for Grassland. Adv. Mater. Res. 2012, 550–553, 62–70. [Google Scholar] [CrossRef]
- Rueda-Núñez, J.L. Chemical Composition for Fighting Forest Fires and Process for Obtaining Thereof. U.S. Patent 8,647,524 B2, 11 February 2014. [Google Scholar]
- Han, Y.; Zhang, X.; Wu, X.; Lu, C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain. Chem. Eng. 2015, 3, 1853–1859. [Google Scholar] [CrossRef]
- Vinogradov, A.V.; Kuprin, D.; Abduragimov, I.; Kuprin, G.; Serebriyakov, E.; Vinogradov, V.V. Silica Foams for Fire Prevention and Firefighting. ACS Appl. Mater. Interfaces 2016, 8, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Dou, X.; Lang, X.; He, L.; Liu, J.; Mu, S. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: Experimental. Soft Mater. 2018, 16, 327–338. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, G.; Jin, S.; Zhang, Q.; Liu, Z. Fire-Extinguishing Efficiency of Superfine Powders under Different Injection Pressures. Int. J. Chem. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R.; Chang, Z.; Tan, Z.; Liu, X. The fire extinguishing mechanism of ultrafine composite dry powder agent containing Mg (OH). Int. J. Quantum Chem. 2021, 121, e26810. [Google Scholar] [CrossRef]
- Ivanovich, Z.B. Method of Firefighting Using a Nano-Powder and Device for Its Implementation. Russian Patent RU2607770C1, 10 January 2017. [Google Scholar]
- ABS. Guidance notes on Fire-Fighting Systems. American Bureau of Shipping; ABS Plaza: Houston, TX, USA, 2017; p. 163. [Google Scholar]
- Mosina, K.S.; Nazarova, E.A.; Vinogradov, A.V.; Vinogradov, V.V.; Krivoshapkina, E.F.; Krivoshapkin, P.V. Alumina Nanoparticles for Firefighting and Fire Prevention. ACS Appl. Nano Mater. 2020, 3, 4386–4393. [Google Scholar] [CrossRef]
- Cuffari, B. How Nanotechnology is Improving Fire Safety Measures. AZONano, 2020. Available online: https://www.azonano.com/article.aspx?ArticleID=5485 (accessed on 8 December 2021).
- Prashantha, K.; Lacrampe, M.F.; Krawczak, P. Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: Effect of halloysites treatment on structural and mechanical properties. Express Polym. Lett. 2011, 5, 295–307. [Google Scholar] [CrossRef]
- Dubois, P.; Alexandre, M.; Claes, M.; Devalckenaere, M. Fireproof Composition. Word Patent WO 2007048208, 16 August 2007. [Google Scholar]
- Tran, M.-P.; Detrembleur, C.; Alexandre, M.; Jerome, C.; Thomassin, J.-M. The influence of foam morphology of multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites on electrical conductivity. Polymer 2013, 54, 3261–3270. [Google Scholar] [CrossRef]
- Xanthos, M. (Ed.) Functional Fillers for Plastics, 2nd ed.; Updated and Enlarged; Wiley-VCH: Weinheim, Germany, 2010; pp. 15–21. [Google Scholar]
- Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 2007, 453, 75–96. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, T.; Gilman, J.W.; Buter, K.M.; Harris, R.H.; Shields, J.R.; Asano, A. Flame retardant mechanism of silica gel/silicas. Fire Mater. 2000, 24, 277–289. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Rothon, R.N. Fire Retardant Fillers for Polymers in Fire Retardancy of Polymers: New Applications of Mineral Fillers; Royal Society of Chemistry: Cambridge, UK, 2005; pp. 19–41. [Google Scholar]
- Salaün, F.; Lemort, G.; Butstraen, C.; Devaux, E.; Capon, G. Influence of silica nanoparticles combined with zinc phosphinate on flame retardant properties of PET. Polym. Adv. Technol. 2017, 28, 1919–1928. [Google Scholar] [CrossRef]
- Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-Cuesta, J.-M.; Ganachaud, F. Flame retardancy of silicone-based materials. Polym. Degrad. Stab. 2009, 94, 465–495. [Google Scholar] [CrossRef]
- Osman, M.A.; Atallah, A.; Suter, U.W. Reinforcement of poly(dimethylsiloxane) networks by montmorillonite platelets. J. Appl. Polym. Sci. 2002, 83, 2175–2183. [Google Scholar] [CrossRef]
- Wypych, G. Functional Fillers: Chemical Composition, Morphology, Performance, Applications, 1st ed.; ChemTech Publishing: Toronto, ON, Canada, 2018; p. 232. [Google Scholar]
- Gardelle, B.; Duquesne, S.; Rerat, V.; Bourbigot, S. Thermal degradation and fire performance of intumescent silicone-based coatings. Polym. Adv. Technol. 2013, 24, 62–69. [Google Scholar] [CrossRef]
- Gardelle, B.; Duquesne, S.; Vandereecken, P.; Bellayer, S.; Bourbigot, S. Resistance to fire of intumescent silicone based coating: The role of organoclay. Prog. Org. Coat. 2013, 76, 1633–1641. [Google Scholar] [CrossRef]
- Chimie, R.; Shin-Etsu Chemical Co., Ltd. Use of a Pretreated Precipitated Silica as a Reinforcing Filler for Silicon Elas-tomer and the Curable Silicone Elastomer Compositions thus Obtained by Cold Mixing. U.S. Patent 8,907,001 B2, 9 December 2014. [Google Scholar]
- Nodera, A.; Kanai, T. Flame retardancy of polycarbonate–polydimethylsiloxane block copolymer/silica nanocomposites. J. Appl. Polym. Sci. 2006, 101, 3862–3868. [Google Scholar] [CrossRef]
- Maciejewski, H.; Dutkiewicz, M.; Byczynski, L.; Marciniec, B. Silsesquioxanes as nanofillers. Part I. Silicone matrix nano-composites. Polimery 2012, 57, 535–544. Available online: https://ichp.vot.pl/index.php/p/article/view/850 (accessed on 20 November 2021). [CrossRef]
- Cordes, D.; Lickiss, P.D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. [Google Scholar] [CrossRef] [PubMed]
- Rezakazemi, M.; Vatani, A.; Mohammadi, T. Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv. 2015, 5, 82460–82470. [Google Scholar] [CrossRef]
- Gilman, J.W.; Jackson, C.L.; Morgan, A.B.; Harris, R.; Manias, E.; Giannelis, E.P.; Wuthenow, M.; Hilton, D.; Phillips, S.H. Flammability Properties of Polymer−Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites. Chem. Mater. 2000, 12, 1866–1873. [Google Scholar] [CrossRef]
- Hanu, L.; Simon, G.; Mansouri, J.; Burford, R.; Cheng, Y. Development of polymer–ceramic composites for improved fire resistance. J. Mater. Process. Technol. 2004, 153–154, 401–407. [Google Scholar] [CrossRef]
- Gilman, J. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 1999, 15, 31–49. [Google Scholar] [CrossRef]
- Beall, K.A. Annual conference on fire research. In Annual Conference on Fire Research; National Institute of Standards and Technology: Gaithersburg, MA, USA, 1998. [Google Scholar]
- Chang, J.-H.; Kim, S.J.; Joo, Y.L.; Im, S. Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: The thermo-mechanical properties and morphology of the hybrid fibers. Polymer 2004, 45, 919–926. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
- Blumstein, A. Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 2665–2672. [Google Scholar] [CrossRef]
- Costache, M.C.; Wang, D.; Heidecker, M.J.; Manias, E.; Wilkie, C.A. The thermal degradation of poly (methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym. Adv. Technol. 2006, 17, 272–280. [Google Scholar] [CrossRef]
- Genovese, A.; Shanks, R.A. Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. Compos. Part A Appl. Sci. Manuf. 2008, 39, 398–405. [Google Scholar] [CrossRef]
- Park, E.-S. Mechanical properties and processibilty of glass-fiber-, wollastonite-, and fluoro-rubber-reinforced silicone rubber composites. J. Appl. Polym. Sci. 2007, 105, 460–468. [Google Scholar] [CrossRef]
- Dow Silicones Corp. Flame Retardant Silicone Foams. U.S. Patent 6,084,002, 4 July 2000.
- Yasir, M.; Ahmad, F.; Yusoff, P.S.M.M.; Ullah, S.; Jimenez, M. Latest trends for structural steel protection by using intumescent fire protective coatings: A review. Surf. Eng. 2019, 36, 334–363. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, H.; Yan, L.; Jia, H. Comparative study of the fire protection performance and thermal stability of intumescent fire-retardant coatings filled with three types of clay nano-fillers. Fire Mater. 2019, 44, 112–120. [Google Scholar] [CrossRef]
- HasaneAhammad, S.; Rajesh, V.; Kumar, K.S.; Jalakam, S.; Kumar, G.N.S. Statistical analysis of spinal cord injury severity detection on high dimensional MRI data. Int. J. Electr. Comput. Eng. 2019, 9, 3457–3464. [Google Scholar] [CrossRef]
- Wang, Z.; Han, E.; Ke, W. An investigation into fire protection and water resistance of intumescent nano-coatings. Surf. Coat. Technol. 2006, 201, 1528–1535. [Google Scholar] [CrossRef]
- Lungu, A.; Cernencu, A.; Vlasceanu, G.; Florea, N.; Ionita, M.; Iovu, H. 3D POSS cages decorated 2D graphenic sheets: A versatile platform for silicon-carbonaceous nano-additives design. Compos. Part B Eng. 2021, 207, 108578. [Google Scholar] [CrossRef]
- Rao, T.N.; Hussain, I.; Koo, B.H. Enhanced thermal properties of silica nanoparticles and chitosan bio-based intumescent flame retardant Polyurethane coatings. Mater. Today Proc. 2019, 27, 369–375. [Google Scholar] [CrossRef]
- Morys, M.; Illerhaus, B.; Sturm, H.; Schartel, B. Variation of Intumescent Coatings Revealing Different Modes of Action for Good Protection Performance. Fire Technol. 2017, 53, 1569–1587. [Google Scholar] [CrossRef]
- Akiike, J. Slurry for Lithium Ion Secondary Battery Porous Film, Production Method Therefor, Separator for Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery. U.S. Patent 2016/0,013,465, 14 January 2016. [Google Scholar]
- Hefei Insulate New Mat Tech Co. Ltd. Intumescent Fireproof Paint for Tunnel. CN Patent 106,833,174, 11 January 2017. [Google Scholar]
- Beaugendre, A.; Lemesle, C.; Bellayer, S.; Degoutin, S.; Duquesne, S.; Casetta, M.; Pierlot, C.; Jaime, F.; Kim, T.; Jimenez, M. Flame retardant and weathering resistant self-layering epoxy-silicone coatings for plastics. Prog. Org. Coat. 2019, 136, 105269. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.-W.; Li, X.-H.; Yu, L.-G.; Zhang, Z.-J. Graphene-based flame retardants: A review. J. Mater. Sci. 2016, 51, 8271–8295. [Google Scholar] [CrossRef]
- Zielecka, M.; Rabajczyk, A.; Pastuszka, Ł.; Jurecki, L. Flame Resistant Silicone-Containing Coating Materials. Coatings 2020, 10, 479. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Sawicki, K.; Czajka, M.; Matysiak-Kucharek, M.; Fal, B.; Drop, B.; Męczyńska-Wielgosz, S.; Sikorska, K.; Kruszewski, M.; Kapka-Skrzypczak, L. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol. Rev. 2019, 8, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Buccellato, F.R.; D’Anca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of Oxidative Damage in Alzheimer’s Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants 2021, 10, 1353. [Google Scholar] [CrossRef]
- Vinod, C.; Jena, S. Nano-Neurotheranostics: Impact of Nanoparticles on Neural Dysfunctions and Strategies to Reduce Toxicity for Improved Efficacy. Front. Pharmacol. 2021, 12, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Bakand, S.; Hayes, A. Finance Dechsakulthorn Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal. Toxicol. 2012, 24, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Park, M.V.D.Z.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OSHA FactSheet. Working Safely with Nanomaterials. Available online: https://www.osha.gov/sites/default/files/publications/OSHA_FS-3634.pdf (accessed on 20 November 2021).
- Technical ISO/TR, Report 18637. Nanotechnologies-Overview of Available Frameworks for the Development of Occu-Pational Exposure Limits and Bands for Nano-Objects and Their Aggregates and Agglomerates (NOAAs); Reference number ISO/TR 18637; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- NIOSH. Occupational Exposure to Titanium Dioxide, Current Intelligence Bulletin 63; Department of Health and Human Services, Centres for Disease Control and Prevention, National Institute for Occupational Safety and Health: Washington, DC, USA, 2011. [Google Scholar]
- Rabajczyk, A.; Zielecka, M. Emission of metal nanoparticles to the environment as a result of industrial processes. Chem. Ind. 2020, 99, 1006–1009. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Yan, K.; Chen, J. Suppression of Aluminum Dust Explosion by Ca(H2PO4)2/RM Composite Powder with Core–Shell Structure: Effect and Mechanism. Processes 2019, 7, 761. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yang, H.X.; Yuan, C.M.; Eckhoff, R.K. A catastrophic aluminum-alloy dust explosion in China. J. Loss Prev. Proc. 2015, 39, 121–130. [Google Scholar] [CrossRef]
- Health and Safety Case Study: KunShan Explosion and Cancer at Samsung”. All Answers Ltd. ukdiss.com, November 2018. Available online: https://ukdiss.com/examples/health-and-safety-case-study.php?vref=1 (accessed on 17 November 2021).
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [Green Version]
- Nazbeen, N.; Wang, Q. Guidelines and Best Practices for Safe Handling of Nanomaterials in Research Laboratories and Industries; A Project of ARCI, Department of Science & Technology, Government of India: Hyderabad, India, 2016; p. 25. [Google Scholar]
The Scope of the Requirements | Document | Characteristics | Ref. |
---|---|---|---|
Fire brigades/CA | OSHS, 1910.156 | It specifies the requirements for, inter alia, organization, training, and personal protective equipment of the fire brigade | [10] |
Protective clothing and equipment for firefighting/US | NFPA 1977 | It specifies the minimum design, performance, testing, and certification requirements for elements of protective clothing and firefighting equipment in wild and urban areas, including protective clothing, protective helmets, protective gloves, protective footwear, goggles, and chain saw protectors; and for load carrying equipment. | [11] |
Fire Code/US | NFPA 1 | Refers to over 130 codes and standards of NFPA®, including, but not limited to, industry patterns; includes, among other things, inspections of permanent and temporary buildings, processes, equipment, inspection of construction plans, drawings, and specifications for safety systems. | [12] |
Fire truck/US | NFPA 1901 | Requirements for new automotive fire-fighting devices and trailers intended for the transport of personnel and equipment in emergency conditions. | [13] |
Sprinkler System Installation/US | NFPA 13 | It specifies the minimum requirements for the design and installation of automatic fire sprinkler systems; does not include requirements for the design or installation of water mist fire protection systems. | [14] |
Production of organic coatings/US | NFPA 35 | Used for facilities that use flammable liquids to produce organic coatings for automotive, industrial, institutional, home, marine, printing, transportation, and other applications; does not include, inter alia, spray application with combustible materials, dipping, coating, and printing processes using combustible liquids. | [15] |
Prevention, preparedness, and response to chemical accidents/UE | CFPA-E Guideline No 18: 2013 F | It concerns the prevention of chemical accidents; application to buildings (plants) producing chemicals and define preventive and emergency measures that help reduce damage after a fire or explosion (including, inter alia, synthesis, physical operations such as formulation and standardization, in production and pilot plants); does not apply to warehouses, tanks, and laboratories. | [16] |
Building sites/UE | CFPA-E Guideline No 21: 2021 F | Intended for construction works, including renovation; the target group are, among other clients, developers, contractors, emergency services, fire consultants, insurers; the guidelines apply to larger buildings, they do not concern fire protection problems and solutions for underground construction works. | [17] |
Fire classification of construction products and building elements/UE | EN 13501–1: 2018 | Classification of construction products in terms of fire behavior and fire resistance; the following are essential: maintaining the load-bearing capacity of the structure and fire spreading conditions; it is necessary to demonstrate the fire resistance of the load-bearing and/or room-separating building elements over time; introduces Euroclasses. | [18] |
Fire protection products/UE | ETAG 018–1–3 | Requirements for performance, criteria for assessing fire protection products in facilities; division into three groups of products and sets. | [19] |
Basic protective clothing for a firefighter/PL | EN 469: 2020 | Specifies the basic protective clothing for a firefighter, which is used during firefighting actions and related activities; deals with the layouts of fabrics used in garments, accessories, seams, and structures. | [20] |
Protective clothing against chemicals/PL | EN 14325: 2018 | Specifies test methods and classification of materials, seams, permanent and separable joints used in chemical protective clothing. | [21] |
The Morphology of the Nanoadditive | Type of Nanoadditive | Modified Material | Thermal Resistance | Ref. |
---|---|---|---|---|
one-dimensional | modified halloysite nanotubes | polypropylene | increased | [110] |
modified carbon nanotubes with double walls | silicone rubber | reduced | [111] | |
unmodified carbon nanotubes with double walls | silicone rubber | increased | [111] | |
modified carbon nanotubes with double walls | poly(methyl methacrylate) | increased | [112] | |
unmodified halloysite nanotubes | silicone rubber | reduced | [113] | |
two-dimensional | montmorillonite | poly(methyl methacrylate) | increased | [114] |
three-dimensional | hydrophobized nanosilica | silicone rubber | increased | [115] |
hydrophilic nanosilica | silicone rubber | reduced | [116] | |
hydrophilic nanosilica | polyethylene terephthalate | increased | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabajczyk, A.; Zielecka, M.; Popielarczyk, T.; Sowa, T. Nanotechnology in Fire Protection—Application and Requirements. Materials 2021, 14, 7849. https://doi.org/10.3390/ma14247849
Rabajczyk A, Zielecka M, Popielarczyk T, Sowa T. Nanotechnology in Fire Protection—Application and Requirements. Materials. 2021; 14(24):7849. https://doi.org/10.3390/ma14247849
Chicago/Turabian StyleRabajczyk, Anna, Maria Zielecka, Tomasz Popielarczyk, and Tomasz Sowa. 2021. "Nanotechnology in Fire Protection—Application and Requirements" Materials 14, no. 24: 7849. https://doi.org/10.3390/ma14247849
APA StyleRabajczyk, A., Zielecka, M., Popielarczyk, T., & Sowa, T. (2021). Nanotechnology in Fire Protection—Application and Requirements. Materials, 14(24), 7849. https://doi.org/10.3390/ma14247849