Research and Engineering Application of Salt Erosion Resistance of Magnesium Oxychloride Cement Concrete
Abstract
:1. Foreword
2. Experiment
2.1. Raw Materials
2.2. Preparation of MOCC
2.3. Characterization
2.4. Engineering Application
3. Results and Discussion
3.1. Macro Morphology of MOCC
3.2. The Microscopic Morphology of the Surface Layer of MOCC
3.3. Surface Phase Composition of MOCC
3.4. Erosion Depth of MOCC
3.5. Mechanical Properties of MOCC
3.6. Engineering Application Verification of MOCC
4. Conclusions
- (1)
- Under the extreme environment of full immersion in concentrated brine of salt lakes, the surface of MOCC is not damaged due to salt crystallization within a 12-month period, its phase composition does not change significantly, the main phase is still 5·1·8 phase, and its microscopic morphology is changed mainly from needle-like to gel-like. As the active MgO reacts with MgCl2 in concentrated brine of salt lakes again, forming a new 5·1·8 phase. It is deposited on the surface layer, making the surface layer more dense. As a result, the erosion depth does not deepen with the prolonged immersion time, and its compressive strength does not decrease but rises, showing good salt erosion resistance.
- (2)
- Based on the actual engineering application, the MOCC pavement is not destroyed, the mechanical properties are stable, the phase composition keeps unchanged nearly. The microscopic morphology changes to gel. These further verify that the MOCC has excellent resistance salt erosion performance and good weather resistance. This study provides theoretical and technical support for future promotion and application. Meanwhile this research can take full advantage of the large amount of magnesium chloride resources in Qinghai province, realizing the comprehensive utilization of magnesium resources and possessing excellent environmental effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, M.P. Salt lake resources and eco-environment in China. Act. Geol. Sin. 2010, 84, 1613–1622. [Google Scholar]
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. Chinese Academy of Sciences Salt Lake Research for 60 Years; Science Press: Beijing, China, 2015. [Google Scholar]
- Zhou, G.; Li, S.R.; Wang, Z.J.; Wang, C.F. Investigation and analysis on corrosion situation of concrete in saline soil region. J. Arch. Civ. Eng. 2011, 28, 121–126. [Google Scholar]
- Wang, Y.H.; Jia, S.L.; Zhou, G.; Na, Q.C. Measures of salt corrosion resistance for concrete. J. Xi’an Univ. Technol. 2014, 34, 163–168. [Google Scholar]
- Sun, H.Y.; Fu, Y.F.; Lu, C.R.; Li, W.H. Present situation of corrosion and protection of buildings in saline soil and salt lake environments. Corros. Prot. 2012, 33, 625–663. [Google Scholar]
- Chang, C.; Dong, J.; Xiao, X.; Zheng, W.; Wen, J.; Li, Y.; Huang, Q.; Man, Y. Long-term mechanical properties and micro mechanism of magnesium oxychloride cement concrete. Adv. Cem. Res. 2020, 32, 371–378. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.S.; Yao, N.; Zhang, A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020, 255, 119381. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Bi, W.; Cheeseman, C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019, 213, 528–536. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Soe, K.; Pulham, M. Recent development in magnesium oxychloride cement. Struct. Concr. 2018, 19, 1290–1300. [Google Scholar] [CrossRef]
- He, P.; Poon, C.S.; Tsang, D. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Constr. Build. Mater. 2017, 147, 519–524. [Google Scholar] [CrossRef]
- He, P.; Hossain, U.; Poon, C.S.; Tsang, D. Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. J. Clean. Prod. 2019, 207, 391–399. [Google Scholar] [CrossRef]
- He, P.; Poon, C.S.; Tsang, D. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018, 86, 98–109. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, Q.; Deng, D. The role of phosphoric acid in improving the strength of magnesium oxychloride cement pastes with large molar ratios of H2O/MgCl2. Cem. Concr. Compos. 2019, 97, 379–386. [Google Scholar] [CrossRef]
- Yu, K.Q.; Guo, Y.; Zhang, Y.X.; Soe, K. Magnesium oxychloride cement-based strain-hardening cement itious composite: Mechanical property and water resistance. Constr. Build. Mater. 2020, 261, 119970. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Y.; Yu, J.; Xiao, J.; Xu, S. Feasibility study of strain hardening magnesium oxychloride cement-based composites. Constr. Build. Mater. 2018, 165, 750–760. [Google Scholar] [CrossRef]
- Li, Z.; Chau, C. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007, 37, 866–870. [Google Scholar] [CrossRef]
- Pavlíková, M.; Pivák, A.; Záleská, M.; Jankovský, O.; Reiterman, P.; Pavlík, Z. Magnesium oxychloride cement composites lightened with granulated scrap tires and expanded glass. Materials 2020, 13, 4828. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlíková, M.; Jankovský, O.; Lojka, M.; Pivák, A.; Pavlík, Z. Experimental analysis of MOC composite with a waste-expanded polypropylene-based aggregate. Materials 2018, 11, 931. [Google Scholar] [CrossRef] [Green Version]
- Aiken, T.A.; Russell, M.; McPolin, D.; Bagnall, L. Magnesium oxychloride boards: Understanding a novel building material. Mater. Constr. 2020, 53, 118. [Google Scholar] [CrossRef]
- Wang, D.; Di, S.; Gao, X.; Wang, R.; Chen, Z. Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge. Constr. Build. Mater. 2020, 250, 118933. [Google Scholar] [CrossRef]
- Hrabová, K.; Lehner, P.; Ghosh, P.; Konečný, P.; Teplý, B. Sustainability levels in comparison with mechanical properties and durability of pumice high-performance concrete. Appl. Sci. 2021, 11, 4964. [Google Scholar] [CrossRef]
- Fazli, H.; Yan, D.; Zhang, Y.; Zeng, Q. Effect of size of coarse aggregate on mechanical properties of metakaolin-based geopolymer concrete and ordinary concrete. Materials 2021, 14, 3316. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Pang, J.; Huang, X. Experimental study on the influence of rubber content on chloride salt corrosion resistance performance of concrete. Materials 2021, 14, 4706. [Google Scholar] [CrossRef] [PubMed]
- Konečný, P.; Lehner, P.; Ghosh, P.; Morávková, Z.; Tran, Q. Comparison of procedures for the evaluation of time dependent concrete diffusion coefficient model. Constr. Build. Mater. 2020, 258, 119535. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Y.; Chang, C.; Wen, J.; Dong, J.; Zheng, W.; Danchun, A.; Liu, P.; Dong, F.; Zhou, Y.; et al. The salt attack performance of magnesium oxychloride cement exposure to three kinds of brines. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 155–166. [Google Scholar] [CrossRef]
Composition | MgCl2 | NaCl | MgSO4 | KCl | CaCl2 | Water Insoluble Matter | H2O |
---|---|---|---|---|---|---|---|
Content (wt.%) | 44.90 | 0.13 | 0.06 | 0.01 | 0.03 | 0.27 | 51.04 |
Composition | MgO | MgCO3 | CaCO3 | f-CaO | Acid Insoluble Matter |
---|---|---|---|---|---|
Content (wt.%) | 69.52 | 19.80 | 1.34 | 0.38 | 8.41 |
Composition | K+ | Ca2+ | Mg2+ | Na+ | Fe3+ | Al3+ | Cl− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|
Content (g/L) | 0.62 | 0.49 | 113.0 | 1.99 | 0.007 | 0.012 | 342.88 | 0.651 | 1.916 |
Composition | SiO2 | Al2O3 | K2O | CaO | Fe2O3 | TiO | MgO |
---|---|---|---|---|---|---|---|
Content (wt.%) | 40.04 | 41.87 | 3.29 | 1.49 | 9.68 | 0.95 | 0.74 |
Raw Materials | Light Burned Magnesia | Sand | Crushed Stone | Fly Ash | 23.5% of Mass FractionSolution |
---|---|---|---|---|---|
Quality/Kg | 12 | 40 | 63 | 1.8 | 7.9 |
Soaking Time/Month | 1 | 3 | 6 | 9 | 12 |
Erosion depth/mm | 5 | 6 | 6 | 6 | 6 |
Time/Month | 1 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|
Compressive strength/MPa | 33.8 | 35.6 | 37.2 | 37.8 | 38.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; An, L.; Zheng, W.; Wen, J.; Dong, J.; Yan, F.; Xiao, X. Research and Engineering Application of Salt Erosion Resistance of Magnesium Oxychloride Cement Concrete. Materials 2021, 14, 7880. https://doi.org/10.3390/ma14247880
Chang C, An L, Zheng W, Wen J, Dong J, Yan F, Xiao X. Research and Engineering Application of Salt Erosion Resistance of Magnesium Oxychloride Cement Concrete. Materials. 2021; 14(24):7880. https://doi.org/10.3390/ma14247880
Chicago/Turabian StyleChang, Chenggong, Lingyun An, Weixin Zheng, Jing Wen, Jinmei Dong, Fengyun Yan, and Xueying Xiao. 2021. "Research and Engineering Application of Salt Erosion Resistance of Magnesium Oxychloride Cement Concrete" Materials 14, no. 24: 7880. https://doi.org/10.3390/ma14247880
APA StyleChang, C., An, L., Zheng, W., Wen, J., Dong, J., Yan, F., & Xiao, X. (2021). Research and Engineering Application of Salt Erosion Resistance of Magnesium Oxychloride Cement Concrete. Materials, 14(24), 7880. https://doi.org/10.3390/ma14247880