Dynamic Moduli of Polybutylene Terephthalate Glass Fiber Reinforced in High-Temperature Environments
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Dynamic Mechanical Analysis (DMA) and Sample Preparation
2.2.1. Dynamic Moduli and Glass Transition Temperature Evolution with the Temperature
2.2.2. Multifrequency Assays
3. Analyzing and Discussing the Results
- Ultradur® B 4520: PBT GF0,
- Ultradur® B 4300 G4: PBT GF20, and
- Ultradur® B 4300 G10: PBT GF50.
3.1. Evolution of Dynamic Moduli with Temperature
3.2. Glass Transition Temperature Evolution with Frequency
3.3. Master Curves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jost, V. Packaging related properties of commercially available biopolymers—An overview of the status quo. Express Polym. Lett. 2018, 12, 429–435. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Blends of polylactic acid with thermoplastic copolyester elastomer: Effect of functionalized terpolymer type on reactive toughening. Polym. Eng. Sci. 2017, 58, 280–290. [Google Scholar] [CrossRef]
- Thiyagu, T.T.; Rajeswari, N.; Thendral, T. Effect of nanosilica and neem tree oil on antimicrobial, thermal, mechanical and electrical insulate of biodegradable composite film. Mater. Res. Express 2019, 6, 095410. [Google Scholar] [CrossRef]
- Nor Amira Izzati, A.; John, W.C.; Fazita, M.R.N.; Najieha, N.; Azniwati, A.A.; Khalil, H.P.S.A. Effect of empty fruit bunches microcrystalline cellulose (MCC) on the thermal, mechanical and morphological properties of biodegradable poly (lactic acid) (PLA) and polybutylene adipate terephthalate (PBAT) compo-sites. Mater. Res. Express 2020, 7, 015336. [Google Scholar] [CrossRef]
- Gemmeke, N.; Fuchs, J.; Heim, H.P. Natural fiber reinforced technical (bio-)composites modified with halogen-free flame retardants. In Proceedings of the Annual Technical Conference—ANTEC, Bethel, CO, USA, 17–21 March 2019. [Google Scholar]
- Júnior, J.H.S.A.; Júnior, H.L.O.; Amico, S.C.; Amado, F.D.R. Study of hybrid intralaminate curaua/glass composites. Mater. Des. 2012, 42, 111–117. [Google Scholar] [CrossRef]
- Romanzini, D.; Lavoratti, A.; Ornaghi, H.L.; Amico, S.C.; Zattera, A.J. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater. Des. 2013, 47, 9–15. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Effects of halloysite content on the thermo-mechanical performances of composite bioplastics. Appl. Clay Sci. 2020, 185, 105416. [Google Scholar] [CrossRef] [Green Version]
- Święch, Ł.; Kołodziejczyk, R.; Stącel, N. Experimental Analysis of Perimeter Shear Strength of Composite Sandwich Structures. Materials 2021, 14, 12. [Google Scholar] [CrossRef]
- Shin, J.; Lee, K.; Jung, Y.; Park, B.; Yang, S.J.; Kim, T.; Lee, S. BMechanical Properties and Epoxy Resin Infiltration Behavior of CarbonNanotube-Fiber-Based Single-Fiber Composites. Materials 2021, 14, 106. [Google Scholar] [CrossRef]
- Şimşek, B.; Uygunoğlu, T. A full factorial-based desirability function approach to investigate optimal mixture ratio of polymer concrete. Polym. Compos. 2018, 39, 3199–3211. [Google Scholar] [CrossRef]
- Johnson, A. Materials fit for micromolding. Mach. Des. 2011, 83, 58–63. [Google Scholar]
- Kim, S.Y.; Jang, H.G.; Yang, C.-M.; Yang, B. Multiscale prediction of thermal conductivity for nanocomposites containing crumpled carbon nanofillers with interfacial characteristics. Compos. Sci. Technol. 2018, 155, 169–176. [Google Scholar] [CrossRef]
- Yamamoto, B.E.; Trimble, A.Z.; Minei, B.; Nejhad, M.N.G. Development of multifunctional nanocomposites with 3-D printing additive manufacturing and low graphene loading. J. Thermoplast. Compos. Mater. 2018, 32, 383–408. [Google Scholar] [CrossRef] [Green Version]
- Suzanne, M.; Ramani, A.; Ukleja, S.; McKee, M.; Zhang, J.; Delichatsios, M.; Patel, P.; Clarke, P.; Cusack, P. Fire performance of brominated and halogen-free flame retardants in glass-fiber reinforced poly(butylene terephthalate). Fire Mater. 2018, 42, 18–27. [Google Scholar] [CrossRef]
- Ding, Y.; Stoliarov, S.I.; Kraemer, R.H. Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate. Polymers 2018, 10, 1137. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, Y.R.; Yuen, A.C.; Chen, T.B.; Chan, M.C.; Peng, L.Z.; Yang, W.J.; Zhu, S.E.; Yang, B.H.; Hu, K.H.; et al. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem. Eng. J. 2017, 321, 257–267. [Google Scholar] [CrossRef]
- Ramani, A.; Dahoe, A.E. On the performance and mechanism of brominated and halogen free flame retardants in for-mulations of glass fibre reinforced poly(butylene terephthalate). Polym. Degrad. Stab. 2014, 104, 71–86. [Google Scholar] [CrossRef]
- Louisy, J.; Bourbigot, S.; Duquesne, S.; Desbois, P.; Koenig, A.; Klatt, M. Novel synergists for flame retarded glass-fiber reinforced poly(1,4-butylene terephthalate). Polimery 2013, 58, 403–412. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos. Part A Appl. Sci. Manuf. 2011, 42, 794–800. [Google Scholar] [CrossRef]
- Roenner, N.; Yuan, H.; Krämer, R.H.; Rein, G. Computational study of how inert additives affect the flammability of a polymer. Fire Saf. J. 2019, 106, 189–196. [Google Scholar] [CrossRef]
- Kuram, E.; Ozcelik, B.; Yilmaz, F. The influence of recycling number on the mechanical, chemical, thermal and rheologi-cal properties of poly(butylene terephthalate)/polycarbonate binary blend and glass-fibre-reinforced composite. J. Thermoplast. Compos. Mater. 2016, 29, 1443–1457. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, X.; Xu, T.; Salem, D.R.; Fong, H. Hybrid multi-scale thermoplastic composites reinforced with interleaved nanofiber mats using in-situ polymerization of cyclic butylene terephthalate. Compos. Commun. 2019, 12, 91–97. [Google Scholar] [CrossRef]
- Czigany, T.; Ishak, Z.A.M.; Heitz, T.; Karger-Kocsis, J. Effects of hygrothermal aging on the fracture and failure behavior in short glass fiber-reinforced, toughened poly(butylene terephthalate) composites. Polym. Compos. 1996, 17, 900–909. [Google Scholar] [CrossRef]
- Ishak, Z.M.; Ishiaku, U.; Karger-Kocsis, J. Hygrothermal aging and fracture behavior of short-glass-fiber-reinforced rubber-toughened poly(butylene terephthalate) composites. Compos. Sci. Technol. 2000, 60, 803–815. [Google Scholar] [CrossRef]
- Yow, B.N.; Ishiaku, U.S.; Ishak, Z.A.M.; Karger-Kocsis, J. Kinetics of water absorption and hygrothermal aging rubber toughened poly(butylene terephthalate) with and without short glass fiber reinforcement. J. Appl. Polym. Sci. 2004, 92, 506–516. [Google Scholar] [CrossRef]
- Yow, B.N.; Ishiaku, U.S.; Ishak, Z.A.M.; Karger-Kocsis, J. Fracture behavior of rubber-modified injection molded poly(butylene terephthalate) with and without short glass fiber reinforcement. J. Appl. Polym. Sci. 2002, 84, 1233–1244. [Google Scholar] [CrossRef]
- Zhang, D.; He, M.; Qin, S.; Yu, J.; Guo, J.; Xu, G. Study on dynamic mechanical, thermal, and mechanical properties of long glass fiber reinforced thermo-plastic polyurethane/poly(butylene terephthalate) composites. Polym. Compos. 2018, 39, 63–72. [Google Scholar] [CrossRef]
- Zhang, D.; He, M.; Shuhao, Q.; Yu, J. Influences of poly(ethylene-butylacrylate-glycidyl methacrylate copolymer) on rheology characterization, morphology, dynamic mechanical, thermal, and mechanical properties of long glass fibers reinforced poly(butylene terephthalate) composites. Polym. Compos. 2016, 39, E1354–E1363. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Silberschmidt, V.V. Failure behaviour of short-fibre-reinforced PBT composites: Effect of strain rate. Eng. Fail. Anal. 2019, 105, 466–476. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Silberschmidt, V.V. Damage and damping of short-glass-fibre-reinforced PBT composites under dynamic conditions: Effect of matrix behaviour. Compos. Struct. 2019, 226, 111286. [Google Scholar] [CrossRef]
- Isogai, Y.; Yokoyama, A.; Nguyen, T.T.B.; Sumiyama, T.; Fruich, K.; Nonomura, C. Deformation behavior of thermoplastic elastomer specimens: Observation of the strain behavior in a wide range of tensile speeds. Polym. Eng. Sci. 2018, 58, E151–E157. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Tensile behavior and modeling of short fiber-reinforced polymer composites including tem-perature and strain rate effects. J. Thermoplast. Compos. Mater. 2017, 30, 1414–1437. [Google Scholar] [CrossRef]
- Pereira, G.C.; Rzatki, F.D.; Mazzaferro, L.; Forin, D.M.; Barra, G.M.O. Mechanical and Thermo-Physical Properties of Short Glass Fiber Reinforced Polybutylene Terephthalate upon Aging in Lubricant/Refrigerant Mixture. Mater. Res. 2016, 19, 1310–1318. [Google Scholar] [CrossRef] [Green Version]
- Varga, C.; Bartha, L. Improving Mechanical Properties of Glass Fibre Reinforced PBT Waste for its Recycling as a Product of Pipe System Elements. Polym. Polym. Compos. 2016, 24, 609–616. [Google Scholar] [CrossRef]
- Eftekhari, M.; Fatemi, A.; Khosrovaneh, A. Fatigue Behavior of Neat and Short Glass Fiber Reinforced Polymers under Two-Step Loadings and Periodic Overloads. SAE Int. J. Mater. Manuf. 2016, 9, 585–593. [Google Scholar] [CrossRef]
- Schaaf, A.; de Monte, M.; Moosbrugger, E.; Vormwald, M.; Quaresimin, M. Life estimation methodology for short fiber reinforced polymers under thermo-mechanical loading in auto-motive applications. Mater. Werkst. 2015, 46, 214–228. [Google Scholar] [CrossRef]
- Mbyniec, A.; Uhl, T. Modelling and testing of ageing of short fibre reinforced polymer composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226, 16–31. [Google Scholar] [CrossRef]
- Hashemi, S.H. Temperature, strain rate and weldine effects on strength and micromechanical parameters of short glass fibre reinforced polybutylene terephthalate (PBT). Polym. Test. 2011, 30, 801–810. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Mallick, P.K. Effects of temperature and strain rate on the tensile behavior of shod fiber reinforced polyamide-6. Polym. Compos. 2002, 23, 858–871. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Z.; Pang, H.; Zhang, X. Investigation of effect of temperature and strain rate on mechanical properties of underfill material by use of microtensile specimens. Polym. Test. 2002, 21, 725–733. [Google Scholar] [CrossRef]
- Zhou, Y.; Mallick, P. A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6,6. Mater. Sci. Eng. A 2005, 393, 303–309. [Google Scholar] [CrossRef]
- Zhang, D.; He, M.; Qin, S.; Yu, J. Effect of fiber length and dispersion on properties of long glass fiber reinforced thermoplastic composites based on poly(butylene terephthalate). RSC Adv. 2017, 7, 15439–15454. [Google Scholar] [CrossRef] [Green Version]
- Banik, K.; Mennig, G. Effect of mold temperature on the long-term viscoelastic behavior of polybutylene terepthalate. Polym. Eng. Sci. 2008, 48, 957–965. [Google Scholar] [CrossRef]
Constants for Polynomial Coefficients | A5/B5 (°C−5) | A4/B4 (°C−4) | A3/B3 (°C−3) | A2/B2 (°C−2) | A1/B1 (°C−1) | A0/B0 (-) |
---|---|---|---|---|---|---|
A value | 2.37 × 10−13 | −1.55 × 10−10 | 3.62 × 10−8 | −3.59 × 10−6 | 1.17 × 10−4 | 1.19 × 10−3 |
B value | 6.74 × 10−12 | −4.64 × 10−9 | 1.17 × 10−6 | −1.31 × 10−4 | 5.31 × 10−3 | 1.56 × 10−1 |
A (°C) | B (°C) | R2 |
---|---|---|
50.76 | 0.4 | 0.989 |
Material/Parameters | C (°C) | D (°C/ln (Hz)) | R2 |
---|---|---|---|
PBT GF0 | 47.15 | 2.18 | 0.94 |
PBT GF20 | 50.15 | 2.17 | 0.94 |
PBT GF50 | 53.85 | 1.54 | 0.81 |
Tg0 (°C) | K1 (°C) | K2 (°C/ln (Hz)) |
---|---|---|
48.955 | 0.31 | 2.04 |
Exposure Time/Parameters | A (MPa) | B (MPa) | R2 |
---|---|---|---|
INITIAL | 209 | 1955 | 0.99 |
1 YEAR | 95.8 | 397.2 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, C.; Mira, J.; Carrión-Vilches, F.J.; Cavas, F. Dynamic Moduli of Polybutylene Terephthalate Glass Fiber Reinforced in High-Temperature Environments. Materials 2021, 14, 483. https://doi.org/10.3390/ma14030483
Gómez C, Mira J, Carrión-Vilches FJ, Cavas F. Dynamic Moduli of Polybutylene Terephthalate Glass Fiber Reinforced in High-Temperature Environments. Materials. 2021; 14(3):483. https://doi.org/10.3390/ma14030483
Chicago/Turabian StyleGómez, Carmelo, Jorge Mira, F.J. Carrión-Vilches, and Francisco Cavas. 2021. "Dynamic Moduli of Polybutylene Terephthalate Glass Fiber Reinforced in High-Temperature Environments" Materials 14, no. 3: 483. https://doi.org/10.3390/ma14030483
APA StyleGómez, C., Mira, J., Carrión-Vilches, F. J., & Cavas, F. (2021). Dynamic Moduli of Polybutylene Terephthalate Glass Fiber Reinforced in High-Temperature Environments. Materials, 14(3), 483. https://doi.org/10.3390/ma14030483