Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of The NCF/rGO Nanocomposite
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nayak, P.K.; Erickson, E.M.; Schipper, F.; Penki, T.R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397. [Google Scholar] [CrossRef]
- Kim, U.-H.; Park, G.-T.; Son, B.-K.; Nam, G.W.; Liu, J.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.-K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Yi, T.-F.; Wei, T.-T.; Li, Y.; He, Y.-B.; Wang, Z.-B. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Stor. Mater. 2020, 26, 165–197. [Google Scholar] [CrossRef]
- Foss, C.E.L.; Müssig, S.; Svensson, A.M.; Vie, P.J.S.; Ulvestad, A.; Mæhlen, J.P.; Koposov, A.Y. Anodes for Li-ion batteries prepared from microcrystalline silicon and enabled by binder’s chemistry and pseudo-self-healing. Sci. Rep. 2020, 10, 13193. [Google Scholar] [CrossRef] [PubMed]
- Vorauer, T.; Kumar, P.; Berhaut, C.L.; Chamasemani, F.F.; Jouneau, P.-H.; Aradilla, D.; Tardif, S.; Pouget, S.; Fuchsbichler, B.; Helfen, L.; et al. Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes. Commun. Chem. 2020, 3, 141. [Google Scholar] [CrossRef]
- Francis, C.F.J.; Kyratzis, I.L.; Best, A.S. Lithium-ion battery separators for ionic-liquid electrolytes: A review. Adv. Mater. 2020, 32, 1904205. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C. A review of functional separators for lithium metal battery applications. Materials 2020, 13, 4625. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Hou, J.; Lu, L.; Wang, L.; Ohma, A.; Ren, D.; Feng, X.; Li, Y.; Li, Y.; Ootani, I.; Han, X.; et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 2020, 11, 5100. [Google Scholar] [CrossRef]
- Ye, Y.; Chou, L.-Y.; Liu, Y.; Wang, H.; Lee, H.K.; Huang, W.; Wan, J.; Liu, K.; Zhou, G.; Yang, Y.; et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 2020, 5, 786–793. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, T.-W.; Yin, Y.-C.; Tan, Y.-H.; Song, Y.-H.; Lu, L.-L.; Yao, H.-B. Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance. Nano Lett. 2020, 20, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, Y.J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791. [Google Scholar] [CrossRef]
- Wu, F.; Borodin, O.; Yushin, G. In situ surface protection for enhancing stability and performance of conversion-type cathodes. MRS Energy Sustain. 2017, 4, E9. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Srot, V.; Chen, S.; Zhang, M.; van Aken, P.A.; Wang, Y.; Maier, J.; Yu, Y. Metal–Organic Framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery. ACS Nano 2020. [Google Scholar] [CrossRef]
- Liu, L.; Guo, H.; Zhou, M.; Wei, Q.; Yang, Z.; Shu, H.; Yang, X.; Tan, J.; Yan, Z.; Wang, X. A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: Structural, electrochemical, and mechanism studies. J. Power Sources 2013, 238, 501–515. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Wang, X.; Yang, S.; Liu, X.; Chen, Q. Effects of MoS2 doping on the electrochemical performance of FeF3 cathode materials for lithium-ion batteries. Mater. Lett. 2009, 63, 1788–1790. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Yue, H.; Yang, Y. Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries. J. Mater. Chem. 2012, 22, 24769–24775. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Yi, L.; Guo, H.; Tan, J.; Shu, H.; Yang, X.; Yang, Z.; Wang, X. Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17539–17550. [Google Scholar] [CrossRef]
- Wang, F.; Robert, R.; Chernova, N.A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R.; Wu, L.; et al. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836. [Google Scholar] [CrossRef]
- Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G.G. Carbon metal fluoride nanocomposites: High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 2003, 150, A1318. [Google Scholar] [CrossRef]
- Dimov, N.; Nishimura, A.; Chihara, K.; Kitajou, A.; Gocheva, I.D.; Okada, S. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium–ion and sodium–ion batteries. Electrochim. Acta 2013, 110, 214–220. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Zhou, H.; Ding, J.; Xu, Z.; Bin, W.; Tang, J.; Yang, J. Enhancing the lithium storage capacity of FeF3 cathode material by introducing C@LiF additive. J. Electroanal. Chem. 2018, 810, 41–47. [Google Scholar] [CrossRef]
- Badway, F.; Pereira, N.; Cosandey, F.; Amatucci, G.G. Carbon-metal fluoride nanocomposites: Structure and electrochemistry of FeF3: C. J. Electrochem. Soc. 2003, 150, A1209. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Kitajou, A.; Okada, S.; Yamaki, J.-i. Mechanism on exothermic heat of FeF3 cathode in Li-ion batteries. J. Power Sources 2012, 203, 103–108. [Google Scholar] [CrossRef]
- Karim, M.R.; Shinoda, H.; Nakai, M.; Hatakeyama, K.; Kamihata, H.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Kuroiwa, K.; Kurmoo, M.; et al. Electrical conductivity and ferromagnetism in a reduced graphene–metal oxide hybrid. Adv. Funct. Mater. 2013, 23, 323–332. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y.S.; Wang, T.; Lee, J.Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.; Oh, S.H.; Kim, S.Y.; Kim, J.Y.; Cho, B.W.; Chung, K.Y. An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries. J. Mater. Chem. A 2015, 3, 10258–10266. [Google Scholar] [CrossRef]
- Yu, S.-H.; Conte, D.E.; Baek, S.; Lee, D.-C.; Park, S.-K.; Lee, K.J.; Piao, Y.; Sung, Y.-E.; Pinna, N. Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 4293–4305. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M.D.; Ruoff, R.S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, S.; Xu, R.; Wei, L.; Su, X.; Wu, M. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components. Electrochim. Acta 2017, 252, 200–207. [Google Scholar]
- Kitajou, A.; Ishado, Y.; Yamashita, T.; Momida, H.; Oguchi, T.; Okada, S. Cathode properties of perovskite-type NaMF3 (M=Fe, Mn, and Co) prepared by mechanical ball milling for sodium-ion battery. Electrochim. Acta 2017, 245, 424–429. [Google Scholar] [CrossRef]
- Kitajou, A.; Komatsu, H.; Nagano, R.; Okada, S. Synthesis of FeOF using roll-quenching method and the cathode properties for lithium-ion battery. J. Power Sources 2013, 243, 494–498. [Google Scholar] [CrossRef]
- Yoo, S.; Kang, B. Inhomogeneous delithiation behavior of chemically delithiated Li0.49FePO4 particles of different sizes using a simple centrifuge separation method. Electrochim. Acta. 2015, 151, 270–275. [Google Scholar] [CrossRef]
- Chun, J.; Jo, C.; Lim, E.; Roh, K.C.; Lee, J. Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters. Mater. Lett. 2017, 207, 89–92. [Google Scholar] [CrossRef]
- Hwang, J.; Chun, J. Microwave-assisted solvothermal synthesis of sodium metal fluoride (NaxMFy) nanopowders. J. Am. Ceram 2019, 102, 6475–6479. [Google Scholar] [CrossRef]
- Papiya, F.; Nandy, A.; Mondal, S.; Kundu, P.P. Co/Al2O3-rGO nanocomposite as cathode electrocatalyst for superior oxygen reduction in microbial fuel cell applications: The effect of nanocomposite composition. Electrochim. Acta 2017, 254, 1–13. [Google Scholar]
- Ji, Z.; Wang, Y.; Yang, J.; Shen, X.; Yu, Q.; Kong, L.; Zhou, H. Reduced graphene oxide uniformly decorated with Co nanoparticles: Facile synthesis, magnetic and catalytic properties. RSC Adv. 2016, 6, 107709–107716. [Google Scholar]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar]
- Loryuenyong, V.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng. 2013, 2013, 923403. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Blizanac, B.; DuPasquier, A.; Meister, P.; Placke, T.; Oljaca, M.; Li, J.; Winter, M. Investigation of PF6− and TFSI− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 25306–25313. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, S.; Akbay, T.; Kurihara, T.; Fukuda, T.; Staykov, A.T.; Ida, S.; Ishihara, T. Fast diffusivity of PF6– anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property. J. Mater. Chem. C 2016, 120, 22887–22894. [Google Scholar] [CrossRef]
- Fu, X.-P.; Shen, Q.-K.; Shi, D.; Wu, K.; Jin, Z.; Wang, X.; Si, R.; Song, Q.-S.; Jia, C.-J.; Yan, C.-H. Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for Fischer-Tropsch synthesis. Appl. Catal. B 2017, 211, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Hunault, M.; Robert, J.L.; Newville, M.; Galoisy, L.; Calas, G. Spectroscopic properties of five-coordinated Co2+ in phosphates. SAA 2014, 117, 406–412. [Google Scholar] [CrossRef]
- Chun, J.; Jo, C.; Sahgong, S.; Kim, M.G.; Lim, E.; Kim, D.H.; Hwang, J.; Kang, E.; Ryu, K.A.; Jung, Y.S.; et al. Ammonium fluoride mediated synthesis of anhydrous metal fluoride–mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes. ACS Appl. Mater. Interfaces 2016, 8, 35180–35190. [Google Scholar] [CrossRef]
- Zhukovskii, Y.F.; Kotomin, E.A.; Balaya, P.; Maier, J. Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: Comparison of DFT calculations and experimental studies. Solid State Sci. 2008, 10, 491–495. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.X.; Shi, Y.; Wong, J.I.; Ding, M.; Yang, H.Y. Designed hybrid nanostructure with catalytic effect: Beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci. Rep. 2015, 5, 9164. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Zhu, Y.; Luo, C.; Gao, T.; Suo, L.; Liou, S.-C.; Xu, K.; Wang, C. In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries. J. Power Sources 2016, 307, 435–442. [Google Scholar] [CrossRef]
- Tan, J.; Liu, L.; Guo, S.; Hu, H.; Yan, Z.; Zhou, Q.; Huang, Z.; Shu, H.; Yang, X.; Wang, X. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. Electrochim. Acta 2015, 168, 225–233. [Google Scholar] [CrossRef]
- Teng, Y.T.; Pramana, S.S.; Ding, J.; Wu, T.; Yazami, R. Investigation of the conversion mechanism of nanosized CoF2. Electrochim. Acta 2013, 107, 301–312. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Panneerselvam, A.; O’Regan, C.; Morris, M.A.; Holmes, J.D. Supercritical-fluid synthesis of FeF2 and CoF2 Li-ion conversion materials. J. Mater. Chem. A 2013, 1, 10667–10676. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, S.; Huang, S.; Lu, L.; Lan, L.; Li, S. In situ synthesis of Fe(1−x)CoxF3/MWCNT nanocomposites with excellent electrochemical performance for lithium-ion batteries. J. Mater. Sci. 2018, 53, 2697–2708. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, Y.; Lin, X.; Liu, J.; Yuan, Z.; Cai, Y. Hybrid cobalt(II) fluoride derived from a bimetallic zeolitic imidazolate framework as a high-performance cathode for lithium–ion batteries. J. Phys. Chem. C 2020, 124, 8624–8632. [Google Scholar] [CrossRef]
- Guan, Q.; Cheng, J.; Li, X.; Ni, W.; Wang, B. Porous CoF2 spheres synthesized by a one-pot solvothermal method as high capacity cathode materials for lithium-ion batteries. Chin. J. Chem. 2017, 35, 48–54. [Google Scholar] [CrossRef]
- Senoh, H.; Matsui, K.; Shikano, M.; Okumura, T.; Kiuchi, H.; Shimoda, K.; Yamanaka, K.; Ohta, T.; Fukunaga, T.; Sakaebe, H.; et al. Degradation mechanism of conversion-type iron trifluoride: Toward improvement of cycle performance. ACS Appl. Mater. Interfaces 2019, 11, 30959–30967. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.P.; Fu, L.J.; Liu, H.; Wu, Y.P.; Rahm, E.; Holze, R.; Wu, H.Q. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872–3883. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606–7612. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Jang, J.; Lim, E.; Jo, C.; Chun, J. Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries. Materials 2021, 14, 547. https://doi.org/10.3390/ma14030547
Oh J, Jang J, Lim E, Jo C, Chun J. Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries. Materials. 2021; 14(3):547. https://doi.org/10.3390/ma14030547
Chicago/Turabian StyleOh, Jiwoong, Jooyoung Jang, Eunho Lim, Changshin Jo, and Jinyoung Chun. 2021. "Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries" Materials 14, no. 3: 547. https://doi.org/10.3390/ma14030547
APA StyleOh, J., Jang, J., Lim, E., Jo, C., & Chun, J. (2021). Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries. Materials, 14(3), 547. https://doi.org/10.3390/ma14030547