Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Measurements
3. Results and Discussion
3.1. Thermal Analysis
3.2. XRD Study
3.3. FESEM Study
3.4. FTIR Analysis
3.5. Electrochemical Properties
3.6. Impedance Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sim, C.K.; Majid, S.R.; Mahmood, N.Z. Majid, Noor Zalina Mahmood, Durable porous carbon/ZnMn2O4 composite electrode material for supercapacitor. J. Alloy. Compd. 2019, 803, 424–433. [Google Scholar]
- Wang, X.-T.; Ma, H.; He, X.-J.; Wang, J.-X.; Han, J.-F.; Wang, Y. Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Mater. 2017, 32, 213–220. [Google Scholar] [CrossRef]
- Liu, J.H.; Ge, Y.M.; Li, S.B.; Chen, H.H.; Li, Z.C. A strategy of selecting cooperative vehicle in VANET. Chin. J. Comput. 2016. [Google Scholar] [CrossRef]
- Sim, C.-K.; Razali, S.A.; Majid, S.R.; Mahmood, N.Z. Synthesis and Characterization of Ternary Mesoporous Carbon/ZnMn2O4 for Supercapacitor Application. J. Electron. Mater. 2019, 49, 1024–1035. [Google Scholar] [CrossRef]
- Xing, L.-L.; Wu, X.; Huang, K. High-performance supercapacitor based on three-dimensional flower-shaped Li4Ti5O12-graphene hybrid and pine needles derived honeycomb carbon. J. Colloid Interface Sci. 2018, 529, 171–179. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Cheng, L.X.; Chen, X.Y. Nitrogen/manganese oxides co-doped nanoporous carbon materials: Structure characterization and electrochemical performances for supercapacitor applications. Electrochim. Acta 2015, 161, 84–94. [Google Scholar] [CrossRef]
- Sundaram, M.M.; Mitchell, D.R.G.; Jones, R.T.; Pramanik, N.C.; Jean-Fulcrand, A.; Garnweitner, G. A Hybrid Electrochemical Energy Storage Device Using Sustainable Electrode Materials. ChemistrySelect 2020, 5, 1597–1606. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Sankar, K.V.; Selvan, R.K.; Danielle, M.; Manickam, M. Nano α-NiMoO4as a new electrode for electrochemical supercapacitors. Rsc Adv. 2013, 3, 352–357. [Google Scholar] [CrossRef]
- Sundaram, M.M.; Higley, S.; Baur, C.; Mitchell, D.R.G.; Jones, R.T.; Fichtner, M. Calcined chicken eggshell electrode for battery and supercapacitor applications. Rsc Adv. 2019, 9, 26981–26995. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar]
- Sundriyal, S.; Kaur, H.; Bhardwaj, S.K.; Mishra, S.; Kim, K.-H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Co-Ord. Chem. Rev. 2018, 369, 15–38. [Google Scholar] [CrossRef]
- Díaz, R.; Orcajo, M.G.; Botas, J.A.; Calleja, G.; Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 2012, 68, 126–128. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J.H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. Acs Nano 2015, 9, 6288–6296. [Google Scholar] [CrossRef]
- Ramachandran, R.; Zhao, C.; Luo, D.; Wang, K.; Wang, F. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochim. Acta 2018, 267, 170–180. [Google Scholar] [CrossRef]
- Wang, K.; Gao, S.; Du, Z.; Yuan, A.; Lu, W.; Chen, L. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources 2016, 305, 30–36. [Google Scholar] [CrossRef]
- Hou, X.-Y.; Yan, X.-L.; Wang, X.; Liab, S.; Jiang, Y.; Hu, M.; Zhai, Q.-G. Excellent Supercapacitor Performance of Robust Nickel–Organic Framework Materials Achieved by Tunable Porosity, Inner-Cluster Redox, and in Situ Fabrication with Graphene Oxide. Cryst. Growth Des. 2018, 18, 6035–6045. [Google Scholar] [CrossRef]
- Orefuwa, S.A.; Yang, H.; Goudy, A. Rapid solvothermal synthesis of an isoreticular metal–organic framework with permanent porosity for hydrogen storage. Microporous Mesoporous Mater. 2012, 153, 88–93. [Google Scholar] [CrossRef]
- Choi, I.-H.; Kim, Y.; Lee, D.N.; Huh, S. Three-dimensional cobalt(II) and cadmium(II) MOFs containing 1,4-naphthalenedicarboxylate: Catalytic activity of Cd-MOF. Polyhedron 2016, 105, 96–103. [Google Scholar] [CrossRef]
- Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-Int. J. Hydrog. Energy 2009, 34, 1377–1382. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Martens, W.N.; Frost, R.L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C 2009, 114, 111–119. [Google Scholar] [CrossRef]
- Menczel, J.; Prime, R. Thermal Analysis of Polymers: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Keely, W.M.; Maynor, H.W. Thermal Studies of Nickel, Cobalt, Iron and Copper Oxides and Nitrates. J. Chem. Eng. Data 1963, 8, 297–300. [Google Scholar] [CrossRef]
- Lendzion-Bielun, Z.; Narkiewicz, U.; Arabczyk, W. Cobalt-based Catalysts for Ammonia Decomposition. Materials 2013, 6, 24002409. [Google Scholar]
- Burton, A.W.; Ong, K.; Rea, T.; Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009, 117, 75–90. [Google Scholar] [CrossRef]
- Jahromi, S.P.; Pandikumar, A.; Goh, B.T.; Lim, Y.S.; Basirun, W.J.; Lim, H.N.; Ming, H.N. Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. Rsc Adv. 2015, 5, 14010–14019. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hussein, G.; Brza, M.A.; Mohammed, S.J.; Abdulwahid, R.T.; Saeed, S.R.; Hassanzadeh, A. Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. Nanomaterials 2019, 9, 1557. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.H.; Fu, P.; Liu, M.Y.; Wang, Y.D.; Zhang, Y.C.; Zhao, Q.X. Synthesis, characterization of polytridecamethylene 2,6-naphthalamide as semiaromatic polyamide containing naphthalene-ring. Express Polym. Lett. 2010, 4, 442–449. [Google Scholar]
- Kadhemy, M.F.H.; Rasheed, Z.S.; Salim, S.R. Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. J. Radiat. Res. Appl. Sci. 2016, 9, 321–331. [Google Scholar]
- Tang, C.-W.; Wang, C.-B.; Chien, S.-H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. ThermochimicaActa 2008, 473, 68–73. [Google Scholar]
- Aziz, S.B.; Brevik, I.; Hamsan, M.H.; Brza, M.A.; Nofal, M.M.; Abdullah, A.M.; Rostam, S.; Al-Zangana, S.; Muzakir, S.K.; Kadir, M.F.Z. Compatible Solid Polymer Electrolyte Based on Methyl Cellulose for Energy Storage Application: Structural, Electrical, and Electrochemical Properties. Polymers 2020, 12, 2257. [Google Scholar] [CrossRef]
- Hamsan, M.; Aziz, S.B.; Kadir, M.; Brza, M.; Karim, W.O. The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte. Polym. Test. 2020, 90, 106714. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Nofal, M.M.; Brza, M.A.; Abdulwahid, R.T.; Hadi, J.M.; Karim, W.O.; Kadir, M.F.Z. Characteristics of EDLC device fabricated from plasticized chitosan:MgCl2 based polymer electrolyte. J. Mater. Res. Technol. 2020, 9, 10635–10646. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Muzakir, S.K.; Abdulwahid, R.T. Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 8355–8366. [Google Scholar] [CrossRef]
- Asnawi, A.S.F.M.; Aziz, S.B.; Nofal, M.M.; Yusof, Y.M.; Brevik, I.; Hamsan, M.H.; Brza, M.A.; Abdulwahid, R.T.; Kadir, M.F.Z. Metal Complex as a Novel Approach to Enhance the Amorphous Phase and Improve the EDLC Performance of Plasticized Proton Conducting Chitosan-Based Polymer Electrolyte. Membranes 2020, 10, 132. [Google Scholar] [CrossRef]
- Hegde, G.; Manaf, S.A.A.; Kumar, A.; Ali, G.A.M.; Chong, K.F.; Ngaini, Z.; Sharma, K.V. Biowaste Sago Bark Based Catalyst Free Carbon Nanospheres: Waste to Wealth Approach. ACS Sustain. Chem. Eng. 2015, 3, 2247–2253. [Google Scholar] [CrossRef] [Green Version]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Li, Y.; Xie, M.; Zhang, X.; Liu, Q.; Lin, D.; Xu, C.; Xie, F.; Xie, F. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B Chem. 2019, 278, 126–132. [Google Scholar] [CrossRef]
- Xu, J.; Gao, L.; Cao, J.; Wang, W.; Chen, Z. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736. [Google Scholar] [CrossRef]
- Ali, G.A.; A, D.; Supriya, S.; Chong, K.F.; Ethiraj, A.S.; Reddy, M.; Algarni, H.; Hegde, G. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: A green approach. Dalton Trans. 2017, 46, 14034–14044. [Google Scholar] [CrossRef] [Green Version]
- Niveditha, C.V.; Aswini, R.; Fatima, M.J.J.; Ramanarayanan, R.; Pullanjiyot, N.; Swaminathan, S. Feather like highly active Co3O4 electrode for supercapacitor application: A potentiodynamic approach. Mater. Res. Express 2018, 5, 065501. [Google Scholar] [CrossRef]
- Tummala, R.; Guduru, R.K.; Mohanty, P.S. Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J. Power Sources 2012, 209, 44–51. [Google Scholar] [CrossRef]
- Jagadale, A.; Kumbhar, V.; Lokhande, C. Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J. Colloid Interface Sci. 2013, 406, 225–230. [Google Scholar] [CrossRef]
- Lee, D.Y.; Yoon, S.J.; Shrestha, N.K.; Lee, S.-H.; Ahn, H.; Han, S.-H. Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater. 2012, 153, 163–165. [Google Scholar] [CrossRef]
- Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-Based Layered Metal–Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591. [Google Scholar] [CrossRef]
- Brza, M.; Aziz, S.B.; Anuar, H.; Ali, F.; Hamsan, M.; Kadir, M.; Abdulwahid, R.T. Metal framework as a novel approach for the fabrication of electric double layer capacitor device with high energy density using plasticized Poly(vinyl alcohol): Ammonium thiocyanate based polymer electrolyte. Arab. J. Chem. 2020, 13, 7247–7263. [Google Scholar] [CrossRef]
- Brza, M.; Aziz, S.B.; Anuar, H.; Ali, F. Structural, ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: A novel approach to fabricate high performance EDLC devices. Polym. Test. 2020, 91, 106813. [Google Scholar] [CrossRef]
- Aziz, S.B.; Woo, T.J.; Kadir, M.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Farma, R.; Deraman, M.; Awitdrus, A.; Talib, I.A.; Omar, R.; Manjunatha, J.G.; Ishak, M.M.; Basri, N.H.; Dolah, B.N.M. Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci. 2013, 8, 257–273. [Google Scholar]
- Aziz, S.B.; Brza, M.; Mohamed, P.A.; Kadir, M.; Hamsan, M.; Abdulwahid, R.T.; Woo, H. Increase of metallic silver nanoparticles in Chitosan:AgNt based polymer electrolytes incorporated with alumina filler. Results Phys. 2019, 13, 102326. [Google Scholar] [CrossRef]
- Aziz, S.B.; Marif, R.B.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z. Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte. Polymers 2019, 11, 1694. [Google Scholar] [CrossRef] [Green Version]
- Brza, M.A.; Aziz, S.B.; Nofal, M.M.; Saeed, S.R.; Al-Zangana, S.; Karim, W.O.; Hussen, S.A.; Abdulwahid, R.T.; Kadir, M.F.Z. Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS:PEO:NH4BF4-Based Polymer Blend Electrolytes. Polymers 2020, 12, 1885. [Google Scholar] [CrossRef]
- Ali, G.A.; Manaf, S.A.A.; Divyashree, A.; Chong, K.F.; Hegde, G. Superior supercapacitive performance in porous nanocarbons. J. Energy Chem. 2016, 25, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.A.; Manaf, S.A.B.A.; Kumar, A.; Chong, K.F.; Hegde, G. High performance supercapacitor using catalysis free porous carbon nanoparticles. J. Phys. D Appl. Phys. 2014, 47, 495307. [Google Scholar]
- Biswal, A.; Panda, P.K.; Acharya, A.N.; Mohapatra, S.; Swain, N.; Tripathy, B.C.; Jiang, Z.-T.; Sundaram, M.M. Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications. Acs Omega 2020, 5, 3405–3417. [Google Scholar] [CrossRef]
- Zequine, C.; Ranaweera, C.K.; Wang, Z.; Singh, S.; Tripathi, P.; Srivastava, O.N.; Gupta, B.P.; Ramasamy, K.; Kahol, P.K.; Dvornic, P.R.; et al. High Performance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature. Appl. Sci. Rep. 2016, 6, 31704. [Google Scholar]
Temperature (°C) | Sample Name |
---|---|
No further heating | CN-R |
300 | CN-300 |
400 | CN-400 |
500 | CN-500 |
Sample | Elemental Composition (Atomic%) | Elemental Composition (Weight%) | ||||
---|---|---|---|---|---|---|
Co | C | O | Co | C | O | |
CN-R | 15.95 | 35.62 | 48.43 | 43.87 | 19.97 | 36.17 |
CN-300 | 18.27 | 36.37 | 45.36 | 48.08 | 19.51 | 32.41 |
CN-400 | 27.48 | 13.40 | 59.12 | 59.4 | 5.9 | 34.7 |
CN-500 | 37.81 | 10.62 | 51.57 | 70.05 | 4.01 | 25.94 |
Metal | Organic Linkers | Methods | Solvents | Electrolyte | Current Density or Scan Rate | Highest Specific Capacitance (F g−1) | References |
---|---|---|---|---|---|---|---|
Cobalt zinc | Terephthalic acid | Solvothermal | DEF | 0.1 M TBAPF6 in acetonitrile | 25 m Vs−1 | 0.47 | [12] |
Cobalt | Terephthalic acid | Solvothermal (120 °C, 12 h) | DMF & ethanol, | 3 M KOH | 2 A g−1 | 958.1 | [14] |
DMF & water | 626.9 | ||||||
DMF, water & ethanol | 428.3 | ||||||
DMF | 393.4 | ||||||
Ethanol | 654.4 | ||||||
Cobalt | Terephthalic acid | Solvothermal (100 °C, 50 h) | DMF | 1 M LiOH | 0.6 A g−1 | 206.76 | [43] |
Cobalt | Hexamethylenetetraamine and 2,3,5,6- tetrafluoroterephathalic acid | Volatilization (RTP, several days) | Water | 1 M KOH | 1 A g−1 | 2474 | [44] |
2 A g−1 | 1978 | ||||||
Cobalt oxide | 2-methylimidazole | Stirring, direct carbonation & oxidation | Methanol | KOH | 5 mV s−1 | 504 | [13] |
Cobalt-MOF | 2,6-naphthalenedicarboxylic acid | Solvothermal | DMF | 3 M KOH | 0.5 A g−1 | 229 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imaduddin, I.S.; Majid, S.R.; Aziz, S.B.; Brevik, I.; Yusuf, S.N.F.; Brza, M.A.; Saeed, S.R.; Kadir, M.F.Z.A. Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application. Materials 2021, 14, 573. https://doi.org/10.3390/ma14030573
Imaduddin IS, Majid SR, Aziz SB, Brevik I, Yusuf SNF, Brza MA, Saeed SR, Kadir MFZA. Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application. Materials. 2021; 14(3):573. https://doi.org/10.3390/ma14030573
Chicago/Turabian StyleImaduddin, Ibnu Syafiq, Siti Rohana Majid, Shujahadeen B. Aziz, Iver Brevik, Siti Nor Farhana Yusuf, M. A. Brza, Salah R. Saeed, and Mohd Fakhrul Zamani Abdul Kadir. 2021. "Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application" Materials 14, no. 3: 573. https://doi.org/10.3390/ma14030573
APA StyleImaduddin, I. S., Majid, S. R., Aziz, S. B., Brevik, I., Yusuf, S. N. F., Brza, M. A., Saeed, S. R., & Kadir, M. F. Z. A. (2021). Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application. Materials, 14(3), 573. https://doi.org/10.3390/ma14030573