Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization
Abstract
:1. Introduction
- High mobility of charge carriers in combination with their low concentration;
- The maximum possible ratio of surface area to volume;
- Low noise level.
2. Theoretical Background: Models of Adsorption on Epitaxial Graphene
3. Graphene Film Production Technology
4. Study of the Parameters of the Obtained Epitaxial Films
5. Development and Testing of a Graphene-Based Gas Sensor
6. Graphene-Based Biosensor: Detection of Influenza Viruses
6.1. Concept of Graphene/SiC Biosensors
6.2. Graphene/SiC Sensor Preparation
6.3. Influenza Viruses Sensing Experiments
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Some Theoretical Estimates
Appendix B. Graphene-Based Biosensor Supplementary Data
No | Chip Designation | Graphene Surface Treatment in the Chip |
---|---|---|
1 | EG260-9, EG313-4, EG313-15, EG313-41, EG331-61, EG332-13 | Chip with functionalized graphene surface |
2 | EG313-4(A), EG313-41(A), EG331-61(A), EG332-13(A) | Chip from #1 with incubated influenza A virus antibody on the surface of functionalized graphene |
EG260-9(B), EG313-15 (B) | Chip from #1 with incubated influenza B virus antibody on the surface of functionalized graphene | |
3 | EG260-9(B)Al, EG313-15 (B)Al, EG313-41(A)Al, EG331-61(A)Al, EG332-13(A)Al | Chip from #2 passivated with bovine albumin (0.1% BCA in PBS) |
4a | EG260-9(B)Al-AV, EG313-15 (B)Al-AV, EG313-41(A)Al-AV, EG331-61(A)Al-AV | Chip from #3, which was sequentially dipped into solutions of the influenza A virus in PBS at the first stage of the experiment |
4b | EG332-13(A)Al-BV | Chip from #3, which was sequentially dipped into solutions of the influenza B virus in PBS at the first stage of the experiment |
5a | EG260-9(B)Al-AV-BV EG313-15 (B)Al-AV-BV, EG313-41(A)Al-AV-BV, EG331-61(A)Al-AV-BV | Chip from #4a, which was sequentially dipped into solutions of the influenza B virus in PBS at the second stage of the experiment. |
5b | EG332-13(A)Al-BV-AV | Chip from #4a, which was sequentially dipped into solutions of the influenza B virus in PBS at the second stage of the experiment. |
References
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.J.; Black, N.C.G.; Castanon, E.G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 2020, 7, 032002. [Google Scholar] [CrossRef]
- Demon, S.Z.N.; Kamisan, A.I.; Abdullah, N.; Noor, S.A.M.; Khim, O.K.; Kasim, N.A.M.; Yahya, M.Z.A.; Manaf, N.A.A.; Azmi, A.F.M.; Halim, N.A. Graphene-based Materials in Gas Sensor Applications: A Review. Sens. Mater. 2020, 32, 759. [Google Scholar] [CrossRef] [Green Version]
- Justino, C.I.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Terse-Thakoor, T.; Badhulika, S.; Mulchandani, A. Graphene based biosensors for healthcare. J. Mater. Res. 2017, 32, 2905–2929. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Graphene-based biosensors. Interface Focus 2018, 8, 20160132. [Google Scholar] [CrossRef]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75. [Google Scholar] [CrossRef] [Green Version]
- Fraga, T.J.M.; Carvalho, M.N.; Ghislandi, M.G.; da Motta Sobrinho, M.A. Functionalized graphene-based materials as innovated adsorbents of organic pollutants: A consise overview. Braz. J. Chem. Eng. 2019, 36, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Xu, T.; Zhang, X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines 2020, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular adsorption on graphene. J. Phys. Condens. Matter 2014, 26, 443001. [Google Scholar] [CrossRef]
- You, Y.; Deng, J.; Tan, X.; Gorjizadeh, N.; Yoshimura, M.; Smith, S.C.; Sahajwalla, V.; Joshi, R. On the mechanism of gas adsorption for pristine, defective and functionalized graphene. Phys. Chem. Chem. Phys. 2017, 19, 6051–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumara, S.; Meenakshi Sharma, H. Effect of gas adsorption on graphene nanoribbons: A density functional theory. Mater. Today Proc. 2017, 4, 10441–10445. [Google Scholar] [CrossRef]
- Patil, U.; Caffrey, N.M. Adsorption of common solvent molecules on graphene and MoS2 from first-principles. J. Chem. Phys. 2018, 149, 094702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, S.G.; Sulston, K.W. Green-Function Theory of Chemisorption; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Davydov, S.Y.; Sabirova, G.I. Model of adsorption on graphene. Phys. Solid State 2011, 53, 654–664. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Sabirova, G.I. Adsorption of hydrogen, alkali metal, and halogen atoms on graphene: Adatom charge calculation. Tech. Phys. Lett. 2011, 37, 515–518. [Google Scholar] [CrossRef]
- Davydov, S.Y. On the specific features of the density of states of epitaxial graphene formed on metal and semiconductor substrates. Semiconductors 2013, 47, 95–104. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Posrednik, O.V. Low-energy approximation in the theory of adsorption on graphene. Phys. Solid State 2015, 57, 1695–1698. [Google Scholar] [CrossRef]
- Davydov, S.Y. Gaps in the spectrum of epitaxial graphene formed on silicon carbide polytypes. Tech. Phys. Lett. 2013, 39, 101–104. [Google Scholar] [CrossRef]
- Davydov, S.Y. To the theory of adsorption on epitaxial graphene: Model approach. Phys. Solid State 2014, 56, 1483–1489. [Google Scholar] [CrossRef]
- Davydov, S.Y. The interaction of atoms in layers adsorbed on graphene. Tech. Phys. Lett. 2014, 40, 565–567. [Google Scholar] [CrossRef]
- Davydov, S.Y. On the role of temperature in the problem of adsorption on graphene. Tech. Phys. 2016, 61, 1106–1108. [Google Scholar] [CrossRef]
- Göpel, W. Chemisorption and charge transfer at ionic semiconductor surface: Implication in desining gas sensors. Prog. Surf. Sci. 1985, 20, 9–108. [Google Scholar] [CrossRef]
- Henrich, V.E.; Cox, P.A.; Diebold, U. The Surface Science of Metal Oxides. Phys. Today 1995, 48, 58–59. [Google Scholar] [CrossRef] [Green Version]
- An’Chkov, D.G.; Davydov, S.Y.; Troshin, S.V. Effect of adsorption on the surface conductivity and work function. Tech. Phys. Lett. 2007, 33, 782–784. [Google Scholar] [CrossRef]
- An’chkov, D.G.; Davydov, S.Y.; Troshin, S.V. Adsorption of hydrogen atoms and oxygen molecules on zinc oxide and titanium oxide on the surface conductivity and work function. Tech. Phys. Lett. 2008, 34, 795–797. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Posrednik, O.V. Influence of adsorption on the work function and conductivity of carbon nanostructures: Inconsistency of experimental data. Tech. Phys. 2017, 62, 656–659. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, G.R.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.; Zhu, H. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef]
- Hass, J.; De Heer, W.A.; Conrad E, H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, 323202. [Google Scholar] [CrossRef]
- Badami, D. X-Ray studies of graphite formed by decomposing silicon carbide. Carbon 1965, 3, 53–57. [Google Scholar] [CrossRef]
- Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334. [Google Scholar] [CrossRef]
- Lilov, S. Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Mater. Sci. Eng. B 1993, 21, 65–69. [Google Scholar] [CrossRef]
- Ramachandran, V.; Brady, M.F.; Smith, A.R.; Feenstra, R.M.; Greve, D.W. Preparation of Atomically Flat Surfaces on Silicon Carbide Using Hydrogen Etching. J. Elec. Mater. 1998, 27, 308–312. [Google Scholar] [CrossRef]
- Anthony Powell, J.; Larkin, D.J.; Trunek, A.J. Gaseous Etching for Characterization of Structural Defects in Silicon Carbide Single Crystals. Mater. Sci. Forum. 1998, 264–268, 421–424. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Huntzinger, J.R.; Bayle, M.; Roblin, C.; Decams, J.M.; Zahab, A.A.; Contreras, S.; Paillet, M.; Landois, P. Buffer layers inhomogeneity and coupling with epitaxial graphene unravelled by Raman scattering and graphene peeling. Carbon 2020, 163, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Beams, R.; Cançado, L.G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002. [Google Scholar] [CrossRef] [PubMed]
- Panchal, V.; Pearce, R.; Yakimova, R.; Tzalenchuk, A.; Kazakova, O. Standardization of surface potential measurements of graphene domains. Sci. Rep. 2013, 3, 1–8. [Google Scholar]
- Novikov, S.; Lebedeva, N.; Satrapinski, A. Ultrasensitive NO2 Gas Sensor Based on Epitaxial Graphene. J. Sens. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Novikov, S.; Satrapinski, A.; Lebedeva, N.; Iisakka, I. Sensitivity Optimization of Epitaxial Graphene-Based Gas Sensors. IEEE Trans. Instrum. Meas. 2013, 62, 1859–1864. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Lebedev, S.P.; Novikov, S.N.; Davydov, V.Y.; Smirnov, A.N.; Litvin, D.P.; Makarov, Y.N.; Levitskii, V. Supersensitive graphene-based gas sensor. Tech. Phys. 2016, 61, 453–457. [Google Scholar] [CrossRef]
- Novikov, S.; Lebedeva, N.; Satrapinski, A.; Walden, J.; Davydov, V.; Lebedev, A. Graphene based sensor for environmental monitoring of NO2. Sens. Actuators B Chem. 2016, 236, 1054–1060. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2011, 41, 2283–2307. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R.; Sheriff, S.; Padlan, E.A. Antibody-Antigen Complexes. J. Biol. Chem. 1988, 263, 10541–10544. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Usachov, D.; Lebedev, S.; Smirnov, A.N.; Levitskii, V.; Eliseyev, I.; Alekseev, P.; Dunaevskiy, M.; Vilkov, O.Y.; Rybkin, A.G.; et al. Study of the crystal and electronic structure of graphene films grown on 6H-SiC (0001). Semiconductors 2017, 51, 1072–1080. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Eissa, S.; Jiménez, G.C.; Mahvash, F.; Guermoune, A.; Tlili, C.; Szkopek, T.; Zourob, M.; Siaj, M. Functionalized CVD monolayer graphene for label-free impedimetric biosensing. Nano Res. 2015, 8, 1698–1709. [Google Scholar] [CrossRef]
- Mayer, G.; Immunoglobulins-Antigen-Antibody Reactions and Selected Tests. Microbiology and Immunology. University of South Carolina School of Medicine. Available online: http://www.microbiologybook.org/mayer/ab-ag-rx.htm (accessed on 21 January 2021).
- Tsumoto, K.; Caaveiro, J.M.M. Antigen–Antibody Binding. 2016. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0001117.pub3 (accessed on 21 January 2021).
- Tehrani, Z.; Burwell, G.; Azmi, M.A.M.; Castaing, A.; Rickman, R.H.; Almarashi, J.; Dunstan, P.R.; Beigi, A.M.; Doak, S.H.; Guy, O.J. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Mater. 2014, 1. [Google Scholar] [CrossRef]
- Davydov, S.Y. Model estimates of quantum capacitance for amorphous and epitaxial graphene-like compounds. Semiconductors 2021, in press. [Google Scholar]
- Velichiny, F. Physical Values, The Handbook; Grigor’ev, E.S., Meilikhov, E.Z., Eds.; Springer: Moscow, Russia, 1991. [Google Scholar]
- Chen, E.C.M.; Chen, E.S.; Milligan, M.S.; Wentworth, W.E.; Wiley, J.R. Experimental determination of the electron affinities of nitrobenzene, nitrotoluenes, pentafluoronitrobenzene, and isotopic nitrobenzenes and azulenes. J. Phys. Chem. 1992, 96, 2385–2390. [Google Scholar] [CrossRef]
- Alisultanov, Z.Z. Adsorption on tunable bilayer graphene: A model approach. Semiconductors 2013, 47, 962–970. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, A.A.; Davydov, S.Y.; Eliseyev, I.A.; Roenkov, A.D.; Avdeev, O.; Lebedev, S.P.; Makarov, Y.; Puzyk, M.; Klotchenko, S.; Usikov, A.S. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization. Materials 2021, 14, 590. https://doi.org/10.3390/ma14030590
Lebedev AA, Davydov SY, Eliseyev IA, Roenkov AD, Avdeev O, Lebedev SP, Makarov Y, Puzyk M, Klotchenko S, Usikov AS. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization. Materials. 2021; 14(3):590. https://doi.org/10.3390/ma14030590
Chicago/Turabian StyleLebedev, Alexander A., Sergey Yu Davydov, Ilya A. Eliseyev, Alexander D. Roenkov, Oleg Avdeev, Sergey P. Lebedev, Yurii Makarov, Mikhail Puzyk, Sergey Klotchenko, and Alexander S. Usikov. 2021. "Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization" Materials 14, no. 3: 590. https://doi.org/10.3390/ma14030590
APA StyleLebedev, A. A., Davydov, S. Y., Eliseyev, I. A., Roenkov, A. D., Avdeev, O., Lebedev, S. P., Makarov, Y., Puzyk, M., Klotchenko, S., & Usikov, A. S. (2021). Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization. Materials, 14(3), 590. https://doi.org/10.3390/ma14030590