Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study
Abstract
:1. Introduction
2. Details of Calculation Methods
3. Results and Discussion
3.1. Pristine Interfaces
3.2. Doping Interfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Chauhan, A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram. Int. 2016, 42, 56–81. [Google Scholar] [CrossRef]
- Kim, C.S.; Cho, K.; Manjili, M.H.; Nezafati, M. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci. 2017, 52, 13319–13349. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.Y. Review: Mechanical behavior of metal/ceramic interfaces in nano layered composites-experiments and modeling. J. Mater. Sci. 2018, 53, 5562–5583. [Google Scholar] [CrossRef]
- Wunderlich, W. The Atomistic Structure of Metal/Ceramic Interfaces Is the Key Issue for Developing Better Properties. Metals 2014, 4, 410–427. [Google Scholar] [CrossRef] [Green Version]
- Fng, X.; Fan, T.; Zhang, D. Work of adhesion in Al/SiC composites with alloying element addition. Metall. Mater. Trans. A 2013, 44, 5192–5201. [Google Scholar] [CrossRef]
- Shen, P.; Wang, Y.; Ren, L.; Li, S.; Liu, Y.; Jiang, Q. Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system. Appl. Surf. Sci. 2015, 355, 930–938. [Google Scholar] [CrossRef]
- Mousavian, R.T.; Khosroshahi, R.A.; Yazdani, S.; Brabazon, D.; Boostani, A.F. Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles. Mater. Des. 2016, 89, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Laurent, V.; Rado, C.; Eustathopoulos, N. Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 1996, 205, 1–8. [Google Scholar] [CrossRef]
- Hashim, J.; Looney, L.; Hashmi, M.S.J. The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 2001, 119, 329–335. [Google Scholar] [CrossRef]
- Cong, X.S.; Shen, P.; Wang, Y.; Jiang, Q. Wetting of polycrystalline SiC by molten Al and Al−Si alloys. Appl. Surf. Sci. 2014, 317, 140–146. [Google Scholar] [CrossRef]
- Tong, H.; Qiu, F.; Zuo, R.; Shen, P.; Cong, X.; Liu, J.; Yang, H.; Jiang, Q. The effect and mechanism of alloying elements on Al/SiC interfacial reaction in Al melt. Appl. Surf. Sci. 2020, 501, 144265. [Google Scholar] [CrossRef]
- Liu, L.M.; Wang, S.Q.; Ye, H.Q. First-principles study of the effect of hydrogen on the metal–ceramic interface. J. Phys. Condens. Matter 2005, 17, 5335–5348. [Google Scholar] [CrossRef]
- Wang, B.; Dai, J.; Wu, X.; Song, Y.; Yang, R. First-principles study of the bonding characteristics of TiAl(111)/Al2O3(0001) interface. Intermetallics 2015, 60, 58–65. [Google Scholar] [CrossRef]
- Sun, T.; Wu, X.; Wang, R.; Li, W.; Liu, Q. First-principles study on the adhesive properties of Al/TiC interfaces: Revisited. Comput. Mater. Sci. 2017, 126, 108–120. [Google Scholar] [CrossRef]
- Miraz, A.S.M.; Williams, E.; Meng, W.J.; Ramachandran, B.R.; Wick, C.D. Improvement of Ti/TiN interfacial shear strength by doping—A first principles density functional theory study. Appl. Surf. Sci. 2020, 517, 146185. [Google Scholar] [CrossRef]
- Dong, N.; Zhang, C.; Liu, H.; Fan, G.; Fang, X.; Han, P. Effects of different alloying additives X (X = Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study. Comput. Mater. Sci. 2015, 109, 293–299. [Google Scholar] [CrossRef]
- Sun, T.; Wu, X.; Li, W.; Wang, R. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study. Phys. Scr. 2015, 90, 035701. [Google Scholar] [CrossRef]
- Peng, C.; Liang, S.; Huang, F.; Zeng, L.; Zhou, L.; Ran, X. Influence of Au, Cu, Pd added in Ag alloy on stability and electronic structure of Ag/Al interface by first-principles calculations. Mater. Today Commun. 2020, 22, 100670. [Google Scholar]
- Li, S.; Arsenault, R.J.; Jena, P. Quantum chemical study of adhesion at the SiC/Al interface. J. Appl. Phys. 1988, 64, 6246–6253. [Google Scholar] [CrossRef]
- Kohyama, M. Ab initio calculations for SiC–Al interfaces: Tests of electronic-minimization techniques. Model. Simul. Mater. Sci. Eng. 1996, 4, 397–408. [Google Scholar] [CrossRef]
- Tanaka, S.; Kohyama, M. Ab initio study of 3C-SiC/M (M = Ti or Al) nano-hetero interfaces. Appl. Surf. Sci. 2003, 216, 471–477. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, C.; Li, L.; Wang, A.; Mao, A. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces. Surf. Sci. 2018, 670, 1–7. [Google Scholar]
- Wang, C.; Chen, W.; Jia, Y.; Xie, J. Calculating Study on Properties of Al (111)/6H-SiC (0001) Interfaces. Metals 2020, 10, 1197. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Ma, D.; Wang, C. First-principle calculations on the structure of 6H-SiC/Al interface. Mater. Res. Express 2019, 6, 065015. [Google Scholar]
- Wang, C.; Chang, D.; Jia, Y.; Xie, J. Electronic and mechanical properties of Al (100)/6H–SiC (0001) interfaces: A first-principles study. Mater. Res. Express 2019, 6, 126316. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Zha, M.; Wang, C.; Yang, Z.; Jiang, Q. Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: A first-principles study. Appl. Surf. Sci. 2018, 437, 103–109. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study. J. Alloys Compd. 2019, 791, 530–539. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar]
- Kresse, G.; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillonin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
Interfaces | Doping Elements | C-Al (Å) | C-X (Å) | Doping Elements | C-Al (Å) | C-X (Å) | ||
---|---|---|---|---|---|---|---|---|
C-terminated | Sc | 2.03 | 2.12 | 3.14 | Y | 2.06 | 2.25 | 3.18 |
Ti | 2.01 | 2.07 | 3.64 | Zr | 2.03 | 2.22 | 3.39 | |
V | 1.99 | 2.05 | 3.72 | Nb | 2 | 2.2 | 3.47 | |
Cr | 1.98 | 2.04 | 3.78 | Mo | 1.98 | 2.18 | 3.63 | |
Mn | 1.97 | 2.02 | 3.84 | Tc | 1.97 | 2.17 | 3.83 | |
Fe | 1.96 | 2.01 | 3.9 | Ru | 1.96 | 2.16 | 3.91 | |
Co | 1.95 | 2 | 3.99 | Rh | 1.96 | 2.17 | 3.85 | |
Ni | 1.96 | 2.02 | 3.92 | Pd | 1.97 | 2.18 | 3.73 | |
Cu | 1.97 | 2.03 | 3.84 | Ag | 1.98 | 2.2 | 3.62 | |
Zn | 1.98 | 2.04 | 3.79 | Cd | 1.99 | 2.21 | 3.5 | |
Free | 1.99 | - | 3.9 | - | - | - | - |
Interfaces | Doping Elements | Si-Al (Å) | Si-X (Å) | Doping Elements | Si-Al (Å) | Si-X (Å) | ||
---|---|---|---|---|---|---|---|---|
Si-terminated | Sc | 2.6 | 2.68 | 2.51 | Y | 2.62 | 2.78 | 2.49 |
Ti | 2.56 | 2.63 | 2.66 | Zr | 2.59 | 2.72 | 2.55 | |
V | 2.53 | 2.6 | 2.8 | Nb | 2.55 | 2.68 | 2.66 | |
Cr | 2.52 | 2.56 | 2.88 | Mo | 2.52 | 2.65 | 2.85 | |
Mn | 2.51 | 2.53 | 3.05 | Tc | 2.5 | 2.61 | 3.03 | |
Fe | 2.49 | 2.51 | 3.21 | Ru | 2.49 | 2.58 | 3.13 | |
Co | 2.46 | 2.48 | 3.2 | Rh | 2.48 | 2.55 | 3.14 | |
Ni | 2.47 | 2.5 | 3.17 | Pd | 2.49 | 2.54 | 3.08 | |
Cu | 2.5 | 2.53 | 3.07 | Ag | 2.52 | 2.55 | 2.97 | |
Zn | 2.52 | 2.58 | 3.03 | Cd | 2.54 | 2.57 | 2.8 | |
Free | 2.53 | - | 2.93 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, W.; Xie, J. Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials 2021, 14, 630. https://doi.org/10.3390/ma14030630
Wang C, Chen W, Xie J. Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials. 2021; 14(3):630. https://doi.org/10.3390/ma14030630
Chicago/Turabian StyleWang, Changqing, Weiguang Chen, and Jingpei Xie. 2021. "Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study" Materials 14, no. 3: 630. https://doi.org/10.3390/ma14030630
APA StyleWang, C., Chen, W., & Xie, J. (2021). Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials, 14(3), 630. https://doi.org/10.3390/ma14030630