Reusable Sensor for Strontium Sulfate Scale Monitoring in Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Sensor Design and Modeling
2.3. Experimental Setup and Procedure
2.4. Strontium Solutions Preparation
3. Results and Discussion
3.1. Sensor Response to Different Mediums
3.2. Sensor Resetting Capability
3.3. Strontium Ions Concentration Monitoring in Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gregory, A.; Clarke, R. A review of RF and microwave techniques for dielectric measurements on polar liquids. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 727–743. [Google Scholar] [CrossRef]
- Mariotti, C.; Su, W.; Cook, B.S.; Roselli, L.; Tentzeris, M.M. Development of Low Cost, Wireless, Inkjet Printed Microfluidic RF Systems and Devices for Sensing or Tunable Electronics. IEEE Sens. J. 2015, 15, 3156–3163. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Simultaneous detection of two chemicals using a TE02 Quarter-Mode Substrate-Integrated Waveguide Resonator. Sensors 2018, 18, 811. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Islam, M.T.; Islam, M.T.; Chowdhury, M.E.H.; Rmili, H.; Samsuzzaman, M. A Planar Ultrawideband Patch Antenna Array for Microwave Breast Tumor Detection. Materials 2020, 13, 4918. [Google Scholar] [CrossRef] [PubMed]
- Ibanez-Labiano, I.; Alomainy, A. Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures. Materials 2020, 13, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Baelen, D.; Lemey, S.; Verhaevert, J.; Rogier, H. A Novel Manufacturing Process for Compact, Low Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas. Materials 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo-Romera, G.; Herraiz-Martínez, F.J.; Gil, M.; Martínez-Martínez, J.J.; Segovia-Vargas, D. Submersible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization. IEEE Sens. J. 2016, 16, 3587–3596. [Google Scholar] [CrossRef]
- Chahadih, A.; Cresson, P.Y.; Hamouda, Z.; Gu, S.; Mismer, C.; Lasri, T. Microwave/Microfluidic Sensor Fabricated on a Flexible Kapton Substrate for Complex Permittivity Characterization of Liquids. Sens. Actuators A 2015, 229, 128–135. [Google Scholar] [CrossRef]
- Eom, S.; Lim, S. Stretchable Complementary Split Ring Resonator (CSRR)-Based Radio Frequency (RF) Sensor for Strain Direction and Level Detection. Sensors 2016, 16, 1667. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Shaterian, Z.; Abbott, D.; Fumeaux, C.; Martín, F. Two-Dimensional Alignment and Displacement Sensor Based on Movable Broadside-Coupled Split Ring Resonators. Sens. Actuators A 2014, 210, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, J.; Moon, H.; Jang, I.; Choi, J.; Yook, J.; Jung, H. A Planar Split-Ring Resonator-Based Microwave Biosensor for Label-Free Detection of Biomolecules. Sens. Actuators B 2012, 169, 26–31. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.F.; Abbott, D. Microwave microfluidic sensor for determination of glucose concentration in water. In Proceedings of the IEEE 15th Mediterranean Microwave Symposium, Lecce, Italy, 30 November–2 December 2015. [Google Scholar]
- Gennarelli, G.; Romeo, S.; Scarfì, M.R.; Soldovieri, F. A Microwave Resonant Sensor for Concentration Measurements of Liquid Solutions. IEEE Sens. J. 2013, 13, 1857–1864. [Google Scholar] [CrossRef]
- Jankovic, N.; Radonic, V. A Microwave Microfluidic Sensor Based on a Dual-Mode Resonator for Dual-Sensing Applications. Sensors 2017, 17, 2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaks, V. High-Precise Spectrometry of the Terahertz Frequency Range: The Methods, Approaches and Applications. J. Infrared Millim. Terahertz Waves 2012, 33, 43. [Google Scholar] [CrossRef]
- Eldamak, A.R.; Fear, E.C. Conformal and Disposable Antenna-Based Sensor for Non-Invasive Sweat Monitoring. Sensors 2018, 18, 4088. [Google Scholar] [CrossRef] [Green Version]
- Merdhah, A.; Yassin, A. Scale Formation Due to Water Injection in Malaysian Sandstone Cores. Am. J. Appl. Sci. 2009, 6, 1531–1538. [Google Scholar]
- Bouchalkha, A.; Karli, R.; Alhammadi, K.; Anjum, A.; Saadat, I.; Al Ghaferi, A. Graphene Based Sensor for Scale Monitoring. In Proceedings of the RDPETRO 2018: Research and Development Petroleum Conference and Exhibition, Abu Dhabi, United Arab Emirates, 9–10 May 2018; pp. 187–189. [Google Scholar] [CrossRef]
- Bouchalkha, A.; Karli, R.; Alhammadi, K. Graphene Sensor for Scale Monitoring Applications in Oil Pipelines. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar] [CrossRef]
- Temizel, C.; Thanon, D.; Inceisci, T.; Balaji, K.; Suhag, A.; Ranjith, R.; Wijaya, Z.; Abdelfatah, E. An Analysis of Scale Build-up in Seawater Injection of Water Flooding Operations. In Proceedings of the SPE Latin America and Caribbean Mature Fields Symposium, Salvador, Bahia, Brazil, 15–16 March 2017. SPE-184935-MS. [Google Scholar] [CrossRef]
- Al-Matar, H.; Al-Ashhab, J.K.; Mokhtar, S.R.M. Techniques Used to Monitor and Remove Strontium Sulfate Scale in UZ Producing Wells. Soc. Pet. Eng. 2006. [Google Scholar] [CrossRef]
- Crabtree, M.; Eslinger, D.; Fletcher, P.; Miller, M.; Johnson, A.; King, G. Fighting scale-removal and prevention. Oilfield Rev. 1999, 11, 30–45. [Google Scholar]
- Bamidele, O.A.; Falode, O.A.; Omole, O. Effects of Oil Field Scale Deposition on Oil Production from Horizontal Wells. Pet. Coal 2009, 51, 91–99. [Google Scholar]
- Alhammadi, K.; Bouchalkha, A.; Sowwan, S. Scale detection using light sensing technique. In Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, 3–5 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Amiri, M.; Moghadasi, J.; Jamialahmadi, M. A Prediction of the Amount of Strontium Sulfate Scale Formation in Siri Oilfield at Different Temperatures and Pressures. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 5–14. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis & Design, 4th ed.; John Willey & Sons: New York, NY, USA, 2016. [Google Scholar]
- Karli, R.; Ammor, H.; Therzaz, J.; Chaibi, M.; Sanchez, A.M. Design and construction of miniaturized UWB microstrip antenna with slots for UWB applications. Microw. Opt. Technol. Lett. 2015, 57, 460–463. [Google Scholar] [CrossRef]
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Materials Characterization; Wiley: New York, NY, USA, 2004; pp. 5–7. [Google Scholar]
- Rahman, M.N.; Islam, M.T.; Sobuz, M.S. Microwave measurement system to detect salt and sugar concentration. Microw. Opt. Technol. Lett. 2018, 60, 1772–1774. [Google Scholar] [CrossRef]
Reference | f0 (GHz) | f (GHz) | Sensitivity (×10−3) |
---|---|---|---|
[2] 1 | 0.92 | 1.00 | 1.09 |
[12] 1 | 1.18 | 1.52 | 3.60 |
[14] 1 | 3.07 | 3.38 | 1.26 |
This work 1 | 3.88 | 3.66 | 0.72 |
This work 2 | 3.88 | 3.39 | 1.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchalkha, A.; Karli, R.; Alhammadi, K. Reusable Sensor for Strontium Sulfate Scale Monitoring in Seawater. Materials 2021, 14, 676. https://doi.org/10.3390/ma14030676
Bouchalkha A, Karli R, Alhammadi K. Reusable Sensor for Strontium Sulfate Scale Monitoring in Seawater. Materials. 2021; 14(3):676. https://doi.org/10.3390/ma14030676
Chicago/Turabian StyleBouchalkha, Abdellatif, Radouane Karli, and Khalid Alhammadi. 2021. "Reusable Sensor for Strontium Sulfate Scale Monitoring in Seawater" Materials 14, no. 3: 676. https://doi.org/10.3390/ma14030676
APA StyleBouchalkha, A., Karli, R., & Alhammadi, K. (2021). Reusable Sensor for Strontium Sulfate Scale Monitoring in Seawater. Materials, 14(3), 676. https://doi.org/10.3390/ma14030676