Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process
Abstract
:1. Introduction
2. Formula of Plasma Arc Pressure in U-PAW
3. Gas Shear Stress Formula
4. Model of the Weld Pool and Keyhole
5. Experimental Process
6. Results and Discussion
7. Conclusions
- (1)
- The experimental results show that under the same welding process parameters, an open keyhole can be formed after applying the ultrasonic vibration, which further shows that U-PAW improves the keyholing ability.
- (2)
- The acoustic radiation force is considered to modify the formula of the plasma arc pressure in the ultrasonic-assisted PAW, and the prediction accuracy of the plasma arc pressure on the anode surface in U-PAW is improved.
- (3)
- With the modified velocity of the plasma arc near the anode surface, a formula is proposed to calculate the gas shear stress on the workpiece surface.
- (4)
- The effects of ultrasonic vibration on the plasma arc pressure and gas shear stress are considered in modeling the weld pool and keyhole behaviors in U-PAW. The dynamic keyhole evolution behavior in the weld pool is quantitatively analyzed.
- (5)
- The numerical simulation results of the weld pool widths, establishment time of open keyhole, and keyhole exit sizes are in agreement with the experimental ones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, C.S.; Wang, L.; Ren, W.J.; Zhang, X.Y.J. Plasma arc welding: Process, sensing, control and modeling. Manuf. Process. 2014, 16, 74–85. [Google Scholar] [CrossRef]
- Liu, Z.M.; Cui, S.L.; Luo, Z.; Zhang, C.Z.; Wang, Z.M.; Zhang, Y.C. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling. J. Manuf. Process. 2016, 23, 315–327. [Google Scholar] [CrossRef]
- Jia, C.B.; Liu, X.F.; Wu, C.S.; Lin, S.B. Stereo analysis on the keyhole and weld pool behaviorsin K-PAW with triple CCD cameras. J. Manuf. Process. 2018, 32, 754–762. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Zhang, W.; Jiang, F.; Chen, S.J.; Yan, Z.Y. A primary study of variable polarity plasma arc welding using a pulsed plasma gas. Materials 2019, 12, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.S.; Zhao, C.Y.; Zhang, C.; Li, Y.F. Ultrasonic vibration assisted keyholing plasma arc welding. Weld J. 2017, 96, 279–286. [Google Scholar]
- Sun, Q.; Lin, S.; Yang, C.; Zhao, G. Penetration increase of AISI 304 using ultrasonic assisted tungsten inert gas welding. Sci. Technol. Weld. Join. 2009, 14, 765–767. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, C.; Lin, S.; Fan, C.; Liu, W. Ultrasonic wave assisted GMAW. Weld J. 2012, 91, 91s–99s. [Google Scholar]
- Zhang, C.; Wu, C.S.; Tian, S.S. Effect of ultrasonic vibration on current density and keyholing capability of plasma arc. Sci. Technol. Weld. Join. 2020, 25, 422. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Wu, C.S. Experimental study on controlled pulse keyholing plasma arc welding assisted by ultrasonic vibration. Int. J. Adv. Manuf. Technol. 2020, 107, 4995–5009. [Google Scholar] [CrossRef]
- Wu, C.S. Welding Thermal Processes and Weld Pool Behaviors; CRC Press/Taylor & Francis Group: Roca Raton, FL, USA, 2011. [Google Scholar]
- Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations. Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-Jet Powder Flow and Laser–Powder Interaction in Laser Melting Deposition: Modelling Versus Experimental Correlations. Metals 2020, 10, 1113. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.H.; Zhang, X.X.; Wu, C.S. An improved simulation of heat transfer and fluid flow in plasma arc welding with modified heat source model. Int. J. Therm. Sci. 2013, 64, 93–104. [Google Scholar] [CrossRef]
- Xu, G.; Hu, J.; Tsai, H.L. Three-dimensional modeling of the plasma arc in arc welding. J. Appl. Phys. 2008, 104, 103301. [Google Scholar] [CrossRef]
- Li, T.Q.; Wu, C.S. Numerical simulation of plasma arc welding with keyhole-dependent heat source and arc pressure distribution. Int. J. Adv. Manuf. Technol. 2015, 78, 593–602. [Google Scholar] [CrossRef]
- Li, T.Q.; Chen, L.; Zhang, Y.; Yang, X.M.; Lei, Y.C. Metal flow of weld pool and keyhole evolution in gas focusing plasma arc welding. Int. J. Heat Mass Transf. 2020, 150, 119296. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.H.; Zhang, X.X.; Wu, C.S. An evolutionary keyhole-mode heat transfer model in continuous plasma arc welding. Int. J. Heat Mass Transf. 2018, 117, 1188–1198. [Google Scholar] [CrossRef]
- Wu, D.S.; Nguyen, A.V.; Tashiro, S.; Hua, X.M.; Tanaka, M. Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc welding. Int. J. Heat Mass Transf. 2019, 131, 920–931. [Google Scholar] [CrossRef]
- Wu, D.S.; Tashiro, S.; Hua, X.M.; Tanaka, M. A novel electrode-arc-weld pool model for studying the keyhole formation in the keyhole plasma arc welding process. J. Phys. D Appl. Phys. 2019, 52, 165203. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, C.S.; Chen, M. Effects of ultrasonic vibration on the transport coefficients in plasma arc welding. Metals 2020, 10, 312. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Wu, C.S.; Chen, M.A. Numerical analysis of the ultrasound induced arc pressure increment in plasma arc welding. J. Phys. D Appl. Phys. 2019, 52, 1–14. [Google Scholar] [CrossRef]
- Qiao, J.N.; Wu, C.S.; Li, Y.F. Numerical and experimental investigation of keyholing process in ultrasonic vibration assisted plasma arc welding. J. Manuf. Process. 2020, 50, 603–613. [Google Scholar] [CrossRef]
- Francisco, J.T.K.; Kai, K. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors. Ultraso. Sonochem. 2011, 18, 1263–1273. [Google Scholar]
- David, C. Fundamentals and Applications of Ultrasonic Waves; CRC Press: Montrel, QC, Canada, 2002. [Google Scholar]
- Xu, B.; Jiang, F.; Chen, S.J.; Tanaka, M.; Tashiro, S.; Nguyen, A.V. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole. Chin. Phys. B 2018, 27, 034701. [Google Scholar] [CrossRef]
- Allum, C.J. Gas flow in the column of a TIG welding arc. J. Phys. D Appl. Phys. 1981, 14, 1041–1059. [Google Scholar] [CrossRef]
- Lin, M.L.; Eagar, T.W. Pressures produced by gas tungsten arcs. Metall. Mater. Trans. B 1986, 17, 601–607. [Google Scholar] [CrossRef]
- Li, T.Q.; Wu, C.S. An analytic formula describing the plasma arc pressure distribution. China Weld. 2014, 23, 7–11. [Google Scholar]
- Lang, R.Q.; Han, Y.Q.; Bai, X.Y.; Hong, H.T. Prediction of the weld pool stability by material flow behavior of the perforated weld pool. Materials 2020, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Wu, C.S.; Chen, M.A. Numerical analysis of the heat-pressure characteristics in ultrasonic vibration assisted plasma arc. J. Appl. Phys. 2020, 128, 114903. [Google Scholar] [CrossRef]
- Phares, D.J.; Smedley, G.T.; Flagan, R.C. The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid. Mech. 2000, 418, 351–375. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.M.; Qin, G.L.; Bai, X.Y.; Zou, Z.D. Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding. J. Mater. Process. Technol. 2016, 236, 225–234. [Google Scholar] [CrossRef]
- Pan, J.J.; Hu, S.S.; Yang, L.J.; Chen, S.J. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater. 2016, 118, 221–229. [Google Scholar] [CrossRef]
- Bai, X.W.; Colegrove, P.; Ding, J.L.; Zhou, X.M.; Diao, C.L.; Bridgeman, P.; Hönnige, J.R.; Zhang, H.O.; Williams, S. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.K.; Wu, C.S.; Liu, X.F. Single vision system for simultaneous observation of keyhole and weld pool in plasma arc welding. J. Mater. Process. Technol. 2015, 215, 71–78. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Tashiro, S.; Tanaka, M.; Hanh, B.V. Experimental investigation on weld pool formation process in plasma keyhole arc welding. J. Phys. D Appl. Phys. 2018, 51, 1–14. [Google Scholar]
Parameters | Value |
---|---|
Density of Ar (kg/m3) | 1.784 |
Adjusting constant (N) | 1.256 × 10−6 |
Plasma gas flow rate (L/min) | 2.8 |
Conversion coefficient | 2.04 × 10−4 |
Nozzle diameter (mm) | 3.2 |
Distance from electrode to workpiece (m) | 0.005 |
Shielding gas flow rate (L/min) | 20 |
Sound velocity of argon (m/s) | 341 |
Adjusting constant (N) | 4.58 × 10−4 |
Vibration frequency (KHz) | 25 |
Vibration amplitude (μm) | 20 |
Nozzle exit area (m2) | 8.0384 × 10−6 |
Welding Current (A) | Welding Speed (mm/min) | Ultrasonic Vibration | Workpiece Thickness (mm) | |
---|---|---|---|---|
PAW | 80 | 100 | No | 4 |
U-PAW | 80 | 100 | Yes | 4 |
Item | Measured | Calculated |
---|---|---|
Keyholing time (s) | 4.6 | 4.2 |
Keyhole exit length (mm) | 0.98 | 0.9 |
Keyhole exit width (mm) | 1.2 | 0.8 |
Weld width (top) (mm) | 8.8 | 8.9 |
Weld width (bottom) (mm) | 2.8 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, J.; Wu, C.; Li, Y. Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process. Materials 2021, 14, 703. https://doi.org/10.3390/ma14030703
Qiao J, Wu C, Li Y. Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process. Materials. 2021; 14(3):703. https://doi.org/10.3390/ma14030703
Chicago/Turabian StyleQiao, Junnan, Chuansong Wu, and Yongfeng Li. 2021. "Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process" Materials 14, no. 3: 703. https://doi.org/10.3390/ma14030703
APA StyleQiao, J., Wu, C., & Li, Y. (2021). Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process. Materials, 14(3), 703. https://doi.org/10.3390/ma14030703