Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti6Al4V after Thermomechanical Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Macrostructures
3.2. Microstructural Analysis
3.3. Mechanical Testing
3.3.1. Tensile Tests
3.3.2. Micro-Indentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyer, R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Gurrappa, I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 2003, 51, 131–139. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Semiatin, S.L.; Seetharaman, V.; Weiss, I. The thermomechanical processing of alpha/beta titanium alloys. JOM 1997, 49, 33–39. [Google Scholar] [CrossRef]
- Seshacharyulu, T.; Medeiros, S.; Frazier, W.; Prasad, Y. Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater. Sci. Eng. A 2002, 325, 112–125. [Google Scholar] [CrossRef]
- Semiatin, S.L. An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities. Met. Mater. Trans. A 2020, 51, 2593–2625. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695, 211–220. [Google Scholar] [CrossRef]
- Jackson, M.; Boyer, R.R. Titanium and its Alloys: Processing, Fabrication and Mechanical Performance. Encycl. Aerosp. Eng. 2010. [Google Scholar] [CrossRef]
- Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. J. Clean. Prod. 2016, 135, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Lütjering, A.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Qian, M.; Xu, W.; Brandt, M.; Tang, H. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bull. 2016, 41, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Najmon, J.C.; Raeisi, S.; Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 7–31. [Google Scholar]
- Prakash, C.; Singh, S.; Pruncu, C.I.; Mishra, V.; Królczyk, G.; Pimenov, D.Y.; Pramanik, A. Surface Modification of Ti-6Al-4V Alloy by Electrical Discharge Coating Process Using Partially Sintered Ti-Nb Electrode. Materials 2019, 12, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, E.; Kersting, R.; Klein, T.B.; Cruz, M.F.; Borille, A.V. Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP 2015, 35, 55–60. [Google Scholar] [CrossRef]
- Häfele, T.; Schneberger, J.-H.; Kaspar, J.; Vielhaber, M.; Griebsch, J. Hybrid Additive Manufacturing – Process Chain Correlations and Impacts. Procedia CIRP 2019, 84, 328–334. [Google Scholar] [CrossRef]
- Leary, M. Surface roughness optimisation for selective laser melting (SLM). In Laser Additive Manufacturing; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 99–118. [Google Scholar]
- Sizova, I.; Bambach, M. Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing. J. Mater. Process. Technol. 2018, 256, 154–159. [Google Scholar] [CrossRef]
- Bambach, M.; Sizova, I.; Szyndler, J.; Bennett, J.; Hyatt, G.; Cao, J.; Papke, T.; Merklein, M. On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J. Mater. Process. Technol. 2021, 288, 116840. [Google Scholar] [CrossRef]
- Bambach, M.; Sizova, I.; Emdadi, A. Development of a processing route for Ti-6Al-4V forgings based on pre-forms made by selective laser melting. J. Manuf. Process. 2019, 37, 150–158. [Google Scholar] [CrossRef]
- Saboori, A.; Abdi, A.; Fatemi, S.A.; Marchese, G.; Biamino, S.; Mirzadeh, H. Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field. Mater. Sci. Eng. A 2020, 792, 139822. [Google Scholar] [CrossRef]
- Sizova, I.; Hirtler, M.; Günther, M.; Bambach, M. Wire-arc additive manufacturing of pre-forms for forging of a Ti–6Al–4V turbine blade. In Proceedings of the 22nd International Conference on Material Forming (ESAFORM), Vitoria-Gasteiz, Spain, 8–10 May 2019; p. 150017. [Google Scholar]
- Meiners, F.; Ihne, J.; Jürgens, P.; Hemes, S.; Mathes, M.; Sizova, I.; Bambach, M.; Hama-Saleh, R.; Weisheit, A. New Hybrid Manufacturing Routes Combining Forging and Additive Manufacturing to Efficiently Produce High Performance Components from Ti-6Al-4V. Procedia Manuf. 2020, 47, 261–267. [Google Scholar] [CrossRef]
- DIN EN ISO 6892-1:2020-06: Metallische Werkstoffe—Zugversuch—Teil 1: Prüfverfahren bei Raumtemperatur (ISO 6892-1:2019), English Title: Metallic materials—Tensile testing—Part 1: Method of test at room temperature (ISO 6892-1:2019); German version EN ISO 6892-1:2019; Beuth Verlag GmbH: Berlin, Germany, 2020. [CrossRef]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Welsch, G.; Boyer, R.; Collings, E.W. Material Properties Handbook: Titanium Alloys; ASM International: Materials Park, OH, USA, 1994; p. 524. [Google Scholar]
- Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Kulkarni, K.M.; Kalpakjian, S. A Study of Barreling as an Example of Free Deformation in Plastic Working. J. Eng. Ind. 1969, 91, 743–754. [Google Scholar] [CrossRef]
- Azarniya, A.; Colera, X.G.; Mirzaali, M.J.; Sovizi, S.; Bartolomeu, F.; Mare, K.S.W.; Wits, W.W.; Yap, C.Y.; Ahn, J.; Miranda, G.; et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J. Alloys Compd. 2019, 804, 163–191. [Google Scholar] [CrossRef]
- Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S.Y. Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J. Manuf. Mater. Process. 2018, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Galarraga, H.; Warren, R.J.; Lados, D.A.; Dehoff, R.R.; Kirka, M.M.; Nandwana, P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater. Sci. Eng. A 2017, 685, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Motyka, M.; Baran-Sadleja, A.; Sieniawski, J.; Wierzbinska, M.; Gancarczyk, K. Decomposition of deformed α′(α″) martensitic phase in Ti–6Al–4V alloy. Mater. Sci. Technol. 2018, 35, 260–272. [Google Scholar] [CrossRef]
- Chen, H.-Q.; Cao, C.-X. Characterization of hot deformation microstructures of alpha-beta titanium alloy with equiaxed structure. Trans. Nonferrous Met. Soc. China 2012, 22, 503–509. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, X.; Li, J.; Wang, H. The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater. Des. 2015, 67, 538–542. [Google Scholar] [CrossRef]
- Hayes, B.J.; Martin, B.W.; Welk, B.; Kuhr, S.J.; Ales, T.K.; Brice, D.A.; Ghamarian, I.; Baker, A.H.; Haden, C.V.; Harlow, D.G.; et al. Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition. Acta Mater. 2017, 133, 120–133. [Google Scholar] [CrossRef]
- Burgers, W.G. On the process of transition of the cubic-body-centred modification into the hexagonal-closed-packed modi-fication of zirconium. Physica I 1934, 36, 561–586. [Google Scholar] [CrossRef]
Abbreviation | Explanation |
---|---|
L-DED | laser directed energy deposition |
TMP | thermomechanical processing |
AM | additive manufacturing |
NNS | near net shape |
HIP | hot isostatic pressing |
EDC | electrical discharge coating |
Ra | arithmetic average deviation of the measured surface roughness profile from the center line of the measured profile |
LPBF | laser powder bed fusion |
CNC | computer numerical control |
BSE | back scattered electron |
EDX | energy dispersive X-ray |
UTS (Rm) | ultimate tensile strength or yield strength |
Rp0.2 | stress resulting in a plastic strain of 0.2% |
A5 | percentage of plastic plus elastic strain of the gauge (length) at the moment of failure relative to the original gauge length |
Z | percentage of reduction of the cross-sectional area of the gauge |
BOR | Burger’s orientation relationship |
Laser Spot Diameter (mm) | Laser Power (W) | Scanning Speed (mm/min) | Powder Mass Flow (g/min) | Shielding Gas Flow (L/min) (Argon) | Carrier Gas Flow (L/min) (Argon) | Δx/Δy (mm) | Δz (mm) | Stand-off (mm) |
---|---|---|---|---|---|---|---|---|
3.0 | 1680 | 1500 | 8.5 | 10 | 7 | 1.5 | 0.85 | 16 |
Sample Number | Forging | Heat Treatment |
---|---|---|
1 | Alpha-beta Forging at 930 °C up to 50% compression | Beta annealing at 1050 °C for 3 h + stress relief annealing at 710 °C for 6 h + cooling in air |
2 | Alpha-beta forging at 930 °C up to 50% compression | Stress relief annealing at 710 °C for 6 h + cooling in air |
3 | Alpha-beta forging at 930 °C up to 25–30% compression | Stress relief annealing at 710 °C for 6 h + cooling in air |
4 | Beta forging at 1070 °C up to 50% compression | Stress relief annealing at 710 °C for 6 h + cooling in air |
Sample No. | Orientation | Rm (Mpa) | Rp0.2 (Mpa) | A5 (%) | Z (%) | No. Samples Analyzed |
---|---|---|---|---|---|---|
1 | Horizontal | 933 | 864 | 4.5 | 11.8 | 4 |
45° | 899 | 831 | 5.3 | 11.8 | 2 | |
Vertical | 938 | 861 | 6.1 | 16.6 | 2 | |
2 | Horizontal | 912 | 840 | 13.1 | 38.6 | 4 |
45° | 916 | 844 | 13.1 | 32.1 | 2 | |
vertical | 916 | 838 | 14.5 | 37.5 | 2 | |
3 | Horizontal | 886 | 836 | 12.1 | 43.9 | 3 |
45° | 893 | 833 | 11.8 | 37.9 | 2 | |
Vertical | 897 | 816 | 11.9 | 44.9 | 2 | |
4 | Horizontal | 884 | 795 | 7.9 | 19.7 | 4 |
45° | 864 | 771 | 4.3 | 8.6 | 2 | |
Vertical | 833 | 749 | 7.2 | 27.9 | 2 |
Sample Reference | Mean Instrumented Hardness (GPa) | Mean Instrumented Elastic Modulus (GPa) |
---|---|---|
1 | 3.9 (± 0.2) | 132 (± 6) |
2 | 3.7 (± 0.4) | 126 (± 5) |
3 | 3.6 (± 0.1) | 130 (± 3) |
4 | 3.7 (± 0.1) | 128 (± 6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemes, S.; Meiners, F.; Sizova, I.; Hama-Saleh, R.; Röhrens, D.; Weisheit, A.; Häfner, C.L.; Bambach, M. Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti6Al4V after Thermomechanical Processing. Materials 2021, 14, 1039. https://doi.org/10.3390/ma14041039
Hemes S, Meiners F, Sizova I, Hama-Saleh R, Röhrens D, Weisheit A, Häfner CL, Bambach M. Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti6Al4V after Thermomechanical Processing. Materials. 2021; 14(4):1039. https://doi.org/10.3390/ma14041039
Chicago/Turabian StyleHemes, Susanne, Frank Meiners, Irina Sizova, Rebar Hama-Saleh, Daniel Röhrens, Andreas Weisheit, Constantin Leon Häfner, and Markus Bambach. 2021. "Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti6Al4V after Thermomechanical Processing" Materials 14, no. 4: 1039. https://doi.org/10.3390/ma14041039
APA StyleHemes, S., Meiners, F., Sizova, I., Hama-Saleh, R., Röhrens, D., Weisheit, A., Häfner, C. L., & Bambach, M. (2021). Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti6Al4V after Thermomechanical Processing. Materials, 14(4), 1039. https://doi.org/10.3390/ma14041039