Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Porous Zirconia/Magnesia Ceramics
2.2. Characterisation of the Porous Zirconia/Magnesia Scaffolds
2.3. Cell Culture Maintenance and Cell Seeding on Ceramic Samples
2.4. Cell Viability and Proliferation Assay
2.5. Cell Adhesion and Morphology
2.6. Alkaline Phosphatase (ALP) Activity Measurement
2.7. Extracellular Collagen Assessment
2.8. Alizarin Red Staining of Calcium Deposits
2.9. Statistical Analysis
3. Results
3.1. Physicochemical, Morphological and Mechanical Properties of the Porous Zirconia and Magnesia Ceramics
Nominal Composition | 0% MgO/100% ZrO2 | 25% MgO/75% ZrO2 | 50% MgO/50% ZrO2 | 75% MgO/25% ZrO2 | 100% MgO/0% ZrO2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Phases | Cubic (ZrMg)O2 | Tetragonal ZrO2 | Monoclinic ZrO2 | Cubic (ZrMg)O2 | Cubic MgO | Cubic (ZrMg)O2 | Cubic MgO | Cubic (ZrMg)O2 | Cubic MgO | Cubic MgO |
Phase ratio/wt.% | 31 | 66 | 3 | 65 | 35 | 50 | 50 | 26 | 74 | 100 |
Lattice parameters/Å | a = 5.0944 (4) | a = 3.5928 (1) c = 5.0888 (3) | a = 5.13 (1) b = 5.21 (1) c = 5.32 (1) β = 99.1 ° | a = 5.0804 (1) | a = 4.2126 (1) | a = 5.0865 (1) | a = 4.2123 (1) | a = 5.0911 (1) | a = 4.2126 (1) | a = 4.2137 (1) |
Unit cell V/Å3 | 132.21 (3) | 65.69 (6) | 140.5 (1) | 131.12 (1) | 74.76 (1) | 131.60 (1) | 74.74 (1) | 131.96 (1) | 74.76 (1) | 74.84 (1) |
Crystallite size CS/nm | 45 (3) | µm | 39 (9) | µm | µm | µm | µm | µm | µm | 162 (2) |
Microstrain ε/% | 0.34 (1) | 0.08 (1) | 0.05 (1) | 0.08 (1) | 0.02 (1) | 0.08 (1) | 0.02 (1) | 0.10 (1) | 0.02 (1) | 0.00 |
Density ρ/g/cm3 | 5.90 | 6.14 | 5.83 | 5.57 | 3.58 | 5.75 | 3.58 | 5.84 | 3.58 | 3.58 |
Mg in cubic ZrO2/at.% | ≈4 | - | - | ≈15 | - | ≈9 | - | ≈6 | - | - |
Mg/Zr molar ratio | 0.04 | - | - | 0.18 | - | 0.10 | - | 0.06 | - | - |
Porosity/% | ≈33 | ≈30 | ≈31 | ≈33 | ≈37 |
3.2. Cell Adhesion and Morphology on the Ceramic Samples
3.3. Cell Viability and Proliferation on the Ceramic Samples
3.4. Alkaline Phosphatase Activity
3.5. Matrix Mineralisation by Calcium Production
3.6. Collagen Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chevalier, J.; Gremillard, L. Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 2009, 29, 1245–1255. [Google Scholar] [CrossRef]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Porporati, A. Bioinert ceramics: Zirconia and alumina. In Handbook of Bioceramics and Biocomposites; Antoniac, I., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 59–90. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Heuer, A.H.; Lange, F.F.; Swain, M.V.; Evans, A.G. Transformation toughening: An overview. J. Am. Ceram. Soc. 1986, 69, R1–R4. [Google Scholar] [CrossRef]
- Roy, M.E.; Whiteside, L.A.; Katerberg, B.J.; Steiger, J.A.; Nayfeh, T. Not all zirconia femoral heads degrade in vivo. Clin. Orthop. Relat. Res. 2007, 465, 220–226. [Google Scholar] [CrossRef]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Nabiyouni, M.; Brückner, T.; Zhou, H.; Gbureck, U.; Bhaduri, S.B. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018, 66, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Goswami, C.; Bhat, I.K.; Bathula, S.; Singh, T.; Patnaik, A. Physico-mechanical and surface wear assessment of magnesium oxide filled ceramic composites for hip implant application. Silicon 2019, 11, 39–49. [Google Scholar] [CrossRef]
- Ke, D.; Tarafder, S.; Vahabzadeh, S.; Bose, S. Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater. Sci. Eng. C 2019, 96, 10–19. [Google Scholar] [CrossRef]
- Liu, W.; Zou, Z.; Zhou, L.; Liu, H.; Wen, W.; Zhou, C.; Luo, B. Synergistic effect of functionalized poly(l-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro. Mater. Sci. Eng. C 2019, 103, 109851. [Google Scholar] [CrossRef] [PubMed]
- Ewais, E.M.; Amin, A.M.; Ahmed, Y.M.; Ashor, E.A.; Hess, U.; Rezwan, K. Combined effect of magnesia and zirconia on the bioactivity of calcium silicate ceramics at C\S ratio less than unity. Mater. Sci. Eng. C 2017, 70, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Lawrence, J.; Chian, K.S. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion. J. Biomater. Appl. 2004, 19, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Hadjicharalambous, C.; Buyakov, A.; Buyakova, S.; Kulkov, S.; Chatzinikolaidou, M. Porous alumina, zirconia and alumi-na/zirconia for bone repair: Fabrication, mechanical and in vitro biological response. Biomed. Mater. 2015, 10, 025012. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.; Othmer, D. Encyclopedia of Chemical Technology, CD-ROM; John Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Sniezek, E.; Szczerba, J.; Stoch, P.; Prorok, R.; Jastrzebska, I.; Bodnar, W.; Burkel, E. Structural properties of MgO-ZrO2 ceramics obtained by conventional sintering, arc melting and field assisted sintering technique. Mater. Design 2016, 99, 412–420. [Google Scholar] [CrossRef]
- Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M. On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int. J. Refract. Met. Hard Mater. 2009, 27, 962–970. [Google Scholar] [CrossRef]
- Llorca, J.; Orera, V.M. Directionally solidified eutectic ceramic oxides. Prog. Mater. Sci. 2006, 51, 711–809. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, S.; Liu, J.; Wang, J. Effects of growth rate on microstructure and properties of directionally solidified eutectic ceramic Al2O3/MgAl2O4/ZrO2. J. Ceram. Sci. Technol. 2018, 9, 61–68. [Google Scholar]
- Du, Y.; Jin, Z.P. Optimization and calculation of the Zro2-Mgo system. Calphad 1991, 15, 59–68. [Google Scholar]
- Terry, B. Specific chemical rate constants for the acid dissolution of oxides and silicates. Hydrometallurgy 1983, 11, 315–344. [Google Scholar] [CrossRef]
- Grain, C.F. Phase relations in the ZrO2-MgO system. J. Am. Ceram. Soc. 1967, 50, 288–290. [Google Scholar] [CrossRef]
- Aneziris, C.; Pfaff, E.; Maier, H. Corrosion mechanisms of low porosity ZrO2 based materials during near net shape steel casting. J. Eur. Ceram. Soc. 2000, 20, 159–168. [Google Scholar] [CrossRef]
- Patapy, C.; Gouraud, F.; Huger, M.; Guinebretiere, R.; Ouladiaff, B.; Chateigner, D.; Chotard, T. Investigation by neutron dif-fraction of texture induced by the cooling process of zirconia refractories. J. Eur. Ceram. Soc. 2014, 34, 4043–4052. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Prymak, O.; Loza, K.; Buyakov, A.; Kulkov, S.; Chatzinikolaidou, M. Effect of porosity of alumina and zirconia ceramics toward pre-osteoblast response. Front. Bioeng. Biotechnol. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, A.; Bastid, P.; Liu, Q. Mechanical properties of magnesia-spinel composites. J. Am. Ceram. Soc. 2007, 90, 2489–2496. [Google Scholar] [CrossRef]
- Soylemez, B.; Sener, E.; Yurdakul, A.; Yurdakul, H. Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition. J. Sci. Adv. Mater. Devices 2020, 5, 527–534. [Google Scholar] [CrossRef]
- Thomas, S.; Balakrishnan, P.; Sreekala, M. Fundamental Biomaterials: Ceramics; Elsevier BV Woodhead Publishing: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kinney, J.; Marshall, S.; Marshall, G. The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med. 2003, 14, 13–29. [Google Scholar] [CrossRef]
- Arola, D.D.; Reprogel, R.K. Tubule orientation and the fatigue strength of human dentin. Biomaterials 2006, 27, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Dejak, B.; Młotkowski, A. Strength comparison of anterior teeth restored with ceramic endocrowns vs custom-made post and cores. J. Prosthodont. Res. 2018, 62, 171–176. [Google Scholar] [CrossRef]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef]
- Lichtinger, T.K.; Müller, R.T.; Schürmann, N.; Oldenburg, M.; Rumpf, H.M.; Wiemann, M.; Chatzinikolaidou, M.; Jennissen, H.P. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2). Mater. Werkst. 2001, 32, 937–941. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Mygdali, E.; Prymak, O.; Buyakov, A.; Kulkov, S.; Chatzinikolaidou, M. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. J. Biomed. Mater. Res. Part A 2015, 103, 3612–3624. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, J.; Tian, Y.; Huang, B.; Yuan, Y.; Liu, C. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway. Colloids Surf. B Biointerfaces 2016, 145, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, I.; Teotia, A.K.; Kumar, A. Nanohydroxyapatite based ceramic carrier promotes bone formation in a femoral neck canal defect in osteoporotic rats. Biomacromolecules 2019, 21, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Chatzinikolaidou, M.; Pontikoglou, C.; Terzaki, K.; Kaliva, M.; Kalyva, A.; Papadaki, E.; Vamvakaki, M.; Farsari, M. Recombi-nant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloid Surf. B 2017, 149, 233–242. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Kozlova, D.; Sokolova, V.; Epple, M.; Chatzinikolaidou, M. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts. J. Biomed. Mater. Res. Part A 2015, 103, 3834–3842. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, N.; Roy, A.; Kumta, P.N. Magnesium phosphate cement systems for hard tissue applications: A review. ACS Biomater. Sci. Eng. 2016, 2, 1067–1083. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, J.; Hopkins, C.; Chow, D.H.; Qin, L. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives. Adv. Sci. 2020, 7, 1902443. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prymak, O.; Vagiaki, L.E.; Buyakov, A.; Kulkov, S.; Epple, M.; Chatzinikolaidou, M. Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro. Materials 2021, 14, 1049. https://doi.org/10.3390/ma14041049
Prymak O, Vagiaki LE, Buyakov A, Kulkov S, Epple M, Chatzinikolaidou M. Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro. Materials. 2021; 14(4):1049. https://doi.org/10.3390/ma14041049
Chicago/Turabian StylePrymak, Oleg, Lida E. Vagiaki, Ales Buyakov, Sergei Kulkov, Matthias Epple, and Maria Chatzinikolaidou. 2021. "Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro" Materials 14, no. 4: 1049. https://doi.org/10.3390/ma14041049
APA StylePrymak, O., Vagiaki, L. E., Buyakov, A., Kulkov, S., Epple, M., & Chatzinikolaidou, M. (2021). Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro. Materials, 14(4), 1049. https://doi.org/10.3390/ma14041049