Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Porous Polymers
2.3. Plating of Porous Polymer
2.3.1. Method 1
2.3.2. Method 2
2.4. Suzuki-Miyaura cross Coupling Reaction with Pd Catalyzed Porous Polymer
2.5. Analytical Procedures
3. Results and Discussion
3.1. Synthesis and Structure of Porous Polymers
3.2. Properties of AM4-HDA Porous Polymer
3.2.1. Mechanical and Thermal Properties
3.2.2. Absorption of Solvents
3.3. Plating of AM4-HDA Porous Polymer
3.4. Coupling Reaction by Pd Catalyzed Porous Polymer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Svec, F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J. Sep. Sci. 2004, 27, 747–766. [Google Scholar] [CrossRef]
- Aoki, H.; Kubo, T.; Ikegami, T.; Tanaka, N.; Hosoya, K.; Tokuda, D.; Ishizuka, N. Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly (styrene) as a porogen. J. Chromatogr. A 2006, 1119, 66–79. [Google Scholar] [CrossRef]
- Kanamori, K.; Nakanishi, K.; Hanada, T. Rigid Macroporous Poly(divinylbenzene) Monoliths with a Well-Defined Bicontinuous Morphology Prepared by Living Radical Polymerization. Adv. Mater. 2006, 18, 2407–2411. [Google Scholar] [CrossRef]
- Trojer, L.; Bisjak, C.P.; Wieder, W.; Bonn, G.K. High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. J. Chromatogr. A 2009, 1216, 6303–6309. [Google Scholar] [CrossRef] [PubMed]
- Szumski, M.; Buszewski, B. Effect of temperature during photopolymerization of capillary monolithic columns. J. Sep. Sci. 2009, 32, 2574–2591. [Google Scholar] [CrossRef]
- Mori, T.; Kubo, T.; Hosoya, K. Basic Chromatographic Properties of Polyethylene Glycol-type, Polymer-based Monolithic Columns. Anal. Sci. 2010, 26, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, J.; Svec, F.; Frechet, J.M. Efficient Separation of Small Molecules Using a Large Surface Area Hypercrosslinked Monolithic Polymer Capillary Column. Anal. Chem. 2010, 82, 1621–1623. [Google Scholar] [CrossRef] [Green Version]
- Nischang, I.; Bruggemann, O. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based microporous polymer monoliths. J. Chromatogr. A 2010, 1217, 5389–5397. [Google Scholar] [CrossRef]
- Hasegawa, G.; Kanamori, K.; Nakanishi, K.; Yamago, S. Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer 2011, 52, 4644–4647. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Huang, H.; Li, S.; Wang, J.; Tan, X.; Zhang, L.; Chen, G. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J. Chromatogr. A 2013, 1271, 115–123. [Google Scholar] [CrossRef]
- Arrua, R.D.; Nordborg, A.; Haddad, P.R.; Hilder, E.F. Monolithic cryopolymers with embedded nanoparticles. I. Capillary liquid chromatography of proteins using neutral embedded nanoparticles. J. Chromatogr. A 2013, 1273, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jandera, P.; Stankova, M.; Skerikova, V.; Urban, J. Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part I. Reversed-phase liquid chromatography. J. Chromatogr. A 2013, 1274, 97–106. [Google Scholar] [CrossRef]
- Stankova, M.; Jandera, P.; Skerikova, V.; Urban, J. Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aquepous normal-phase liquid chromatography. J. Chromatogr. A 2013, 1289, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Grzywinski, D.; Szumski, M.; Buszewski, B. Hypercrosslinked cholesterol-based polystyrene monolithic columns. J. Chromatogr. A 2016, 1477, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Gibson, G.T.T.; Oleschuk, R.D. Fast preparation of photopolymerized poly(benzyl methacrylate-co-bisphenol A dimethacrylate) monoliths for capillary electrochromatography. J. Chromatogr. A 2010, 1217, 3628–3634. [Google Scholar] [CrossRef]
- Shen, Y.; Qi, L.; Mao, L. Macroporous polymer monoliths with a well-defined dimensional skeletal morphology derived from a novel phase separator for HPLC. Polymer 2012, 53, 4128–4134. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Liu, H.; Zhu, J.; Bian, Y.; Cheng, K.; Zou, H. Monolithic Capillary Column Based Glycoproteomic Reactor for High-Sensitive Analysis of N-Glycoproteome. Anal. Chem. 2013, 85, 2847–2852. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Aggarwal, P.; Tolley, H.D.; Lawson, J.S.; Lee, M.L. Fabrication of highly cross-linked phase monolithic columns via living radical polymerization. J. Chromatogr. A 2014, 1367, 90–98. [Google Scholar] [CrossRef]
- Saba, S.A.; Mousavi, M.P.S.; Buhlmann, P.; Hillmyer, M.A. Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation. J. Am. Chem. Soc. 2015, 137, 8896–8899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, H.; Matsumoto, H.; Shibuya, M.; Akiyoshi, T.; Hoshino, Y.; Miura, Y. Poly(N-isopropylacrylamide)gel-based microporous monolith for continuous-flow recovery of palladium(II) ions. J. Appl. Polym. Sci. 2017, 134, 44385. [Google Scholar] [CrossRef]
- Schulze, M.W.; Hillmyer, M.A. Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization=Induced Microphase Separation. Macromolecules 2017, 50, 997–1007. [Google Scholar] [CrossRef]
- Kim, S.; Seo, M. Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 900–913. [Google Scholar] [CrossRef]
- Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K. A New Preparation Method for Well-Controlled 3D Skeletal Epoxy Resin-Based Polymer Monoliths. Macromolecules 2005, 38, 9901–9903. [Google Scholar] [CrossRef]
- Hosoya, K.; Hira, N.; Yamamoto, K.; Nishimura, M.; Tanaka, N. High-Performance Polymer-Based Monolithic Capillary Column. Anal. Chem. 2006, 78, 5729–5735. [Google Scholar] [CrossRef]
- Nguyen, A.M.; Irgum, K. Epoxy-Based Monoliths. A Novel Hydrophilic Separation Material for Liquid Chromatography of Biomolecules. Chem. Mater. 2006, 18, 6308–6315. [Google Scholar] [CrossRef]
- Tsujioka, N.; Ishizuka, N.; Tanaka, N.; Kubo, T.; Hosoya, K. Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3272–3281. [Google Scholar] [CrossRef]
- Hosoya, K.; Mori, T.; Sakamoto, M.; Kubo, T.; Kaya, K. Properties of a Non-Aromatic Epoxy Polymer-Based Monolithic Capillary Column for μ-HPLC. Chromatographia 2009, 70, 699–704. [Google Scholar] [CrossRef]
- Ren, L.; Liu, Z.; Liu, Y.; Dou, P.; Chen, H.Y. Ring-Opening Polymerization with Synergistic Co-monomers: Access to a Boronate-Functionalized Polymeric Monolith for the Specific Capture of cis-Diol-Coating Biomolecules under Neutral Conditions. Angew. Chem. Int. Ed. 2009, 48, 6704–6707. [Google Scholar]
- Liu, J.; Ren, L.; Liu, Y.; Li, H.; Liu, Z. Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary. J. Chromatogr. A 2012, 1228, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Dario Attua, R.; Gaspar, A.; Lacher, N.A.; Wang, Q.; Haddad, P.R.; Hilder, E.F. Epoxy-based monoliths for capillary liquid chromatography of small and large molecules. Anal. Bioanal. Chem. 2013, 405, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ou, J.; Zhang, Z.; Dong, J.; Zou, H. Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem. Commun. 2013, 49, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ou, J.; Lin, H.; Liu, Z.; Huang, G.; Dong, J.; Zou, H. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer. J. Chromatogr. A 2014, 1367, 131–140. [Google Scholar] [CrossRef]
- Mi, Y.; Zhou, W.; Li, Q.; Zhang, D.; Zhang, R.; Ma, G.; Su, Z. Detailed exploration of structure formation of an epoxy-based monoliths with three-dimensional bicontinuous structure. RSC Adv. 2015, 5, 55419–55427. [Google Scholar] [CrossRef]
- Sakakibara, K.; Kagata, H.; Ishizuka, N.; Sato, T.; Tsujii, Y. Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries. J. Mater. Chem. A 2017, 5, 6866–6873. [Google Scholar] [CrossRef]
- Lin, H.; Ou, J.; Tang, S.; Zhang, Z.; Dong, J.; Liu, Z.; Zou, H. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. J. Chromatogr. A 2013, 1301, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ou, J.; Liu, Z.; Wang, H.; Dong, J.; Zou, H. Thiol-Epoxy Click Polymerization for Preparation of Polymeric Monoliths with Well-Defined 3D Framework for Capillary Liquid Chromatography. Anal. Chem. 2015, 87, 3476–3483. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, L.; Ou, J.; Liu, Z.; Wang, H.; Dong, J.; Zou, H. Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography. J. Chromatogr. A 2015, 1416, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Eissa, A.M.; Schiller, T.L.; Cameron, N.R. Emulsion-templated porous polymers prepared by thiol-ene and thiol-yne photopolymerization using multifunctional acrylate and non-acrylate monomers. Polymer 2017, 126, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Wang, H.; Ou, J.; Liu, Z.; Shen, Y.; Zou, H. Rapid “one-pot” preparation of polymeric monolith via photo-initiated thiol-acrylate polymerization for capillary liquid chromatography. Anal. Chim. Acta 2012, 925, 88–96. [Google Scholar] [CrossRef]
- Alves, F.; Nischang, I. Tailor-Made Hybrid Organic-Inorganic Porous Materials Based on Polyhedral Oligomeric Silsesquioxanes (POSS) by the Step-Growth Mechanism of Thiol-Ene “Click” Chemistry. Chem. Eur. J. 2013, 19, 17310–17313. [Google Scholar] [CrossRef]
- Liu, Z.; Ou, J.; Lin, H.; Wang, H.; Liu, Z.; Dong, J.; Zou, H. Preparation of Monolithic Polymer Columns with Homogeneous Structure via Photoinitiated Thiol-yne Click Polymerization and Their Application in Separation of Small Molecules. Anal. Chem. 2014, 86, 12334–12340. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ou, J.; Lin, H.; Wang, H.; Dong, J.; Zou, H. Photoinduced thiol-ene polymerization reaction for fast preparation of microporous hybrid monoliths and their application in capillary liquid chromatography. Chem. Commun. 2014, 50, 9288–9290. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.; Nischang, I. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics. J. Chromatogr. A 2015, 1412, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temnikov, M.N.; Kononevich, Y.N.; Meshkov, I.B.; Buzin, M.I.; Vasil’ev, V.G.; Nikiforova, G.G.; Muzafarov, A.M. Simple and fast method for producing flexible superhydrophobic aerogels by direct formation pf thiol-ene networks in scCO2. Polymer 2018, 138, 255–266. [Google Scholar] [CrossRef]
- Lin, H.; Ou, J.; Wang, H.; Dong, J.; Zou, H. Facile construction of microporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography. J. Chromatogr. A 2015, 1379, 34–42. [Google Scholar] [CrossRef]
- Bai, J.; Ou, J.; Zhang, H.; Ma, S.; Shen, Y. Synthesis of polymeric monoliths via thiol-maleimide polymerization reaction for highly efficient chromatographic separation. J. Chromatogr. A 2017, 1514, 72–79. [Google Scholar] [CrossRef]
- Murphy, A.R.; Ghobrial, I.; Jamshidi, P.; Laslett, A.; O’Brien, C.M.; Cameron, N.R. Tailored emulsion-templated porous polymers scaffolds for iPSC-derived human neural precursor cell culture. Polym. Chem. 2017, 8, 6617–6627. [Google Scholar] [CrossRef] [Green Version]
- Uyama, H. Polymeric Monolith—New Fabrication Methods and Applications. Kobunshi Ronbunshu 2010, 67, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Nandi, M.; Maruyama, J.; Oka, T.; Tsujimoto, T.; Kondoh, K.; Uyama, H. Fabrication of mesoporous polymer monolith: A template-free approach. Chem. Commun. 2011, 47, 7422–7424. [Google Scholar] [CrossRef]
- Tanigawa, T.; Kubo, T.; Hosoya, K. Specific Chromatographic Retentions on Pore Surface of Macroporous Spongy Monoliths. Chem. Lett. 2012, 41, 1265–1266. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.T.; Dao, V.D.; Choi, H.S. Transferable thin films with sponge-like porous structure via improved phase separation. Polymer 2016, 101, 184–191. [Google Scholar]
- Kang, J.; Gi, H.; Choe, R.; Yun, S.I. Fabrication and characterization of poly(3-hyroxybutyrate) gels using non-solvent-induced phase separation. Polymer 2016, 104, 61–71. [Google Scholar]
- Onder, O.C.; Yilgor, E.; Yilgor, I. Fabrication of rigid poly(lactic acid) foams via thermally induced phase separation. Polymer 2016, 107, 240–248. [Google Scholar] [CrossRef]
- Sun, X.; Sun, G.; Wang, X. Morphology modelling for polymer monolith obtained by non-solvent-induced phase separation. Polymer 2017, 108, 432–441. [Google Scholar] [CrossRef]
- Onder, O.C.; Yilgor, E.; Yilgor, I. Preparation of monolithic polycaprolactone forms with controlled morphology. Polymer 2018, 136, 166–178. [Google Scholar]
- Samitsu, S. Thermally Stable Mesoporous Poly(ether sulfone) Monoliths with Nanofiber Network Structures. Macromolecules 2018, 51, 151–160. [Google Scholar]
- Onder, O.C.; Yilgor, E.; Yilgor, I. Critical parameters controlling the properties of monolithic poly(lactic acid) foams prepared by thermally induced phase separation. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 98–108. [Google Scholar]
- Harada, N.; Nakamura, J.; Uyama, H. Preparation of Macroporous Cellulose Beads through a Single-Step Non-Solvent Induced Phase Separation Method from a Cellulose Acetate Solution. Bull. Chem. Soc. Jpn. 2019, 92, 1444–1446. [Google Scholar]
- Wang, G.; Yu, B.; Chen, S.; Uyama, H. Template-free synthesis of polystyrene monoliths for the removal of oil-in-water emulsion. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kanno, T.; Uyama, H. Unique Transitions in Morphology and Characteristics of Porous Poly(Lactic Acid) Enantiomers. Macromol. Chem. Phys. 2018, 219, 1700547. [Google Scholar] [CrossRef]
- Kanno, T.; Uyama, H. Unique Ivy-Like Morphology Composed of Poly(lactic acid) and Bacterial Cellulose Cryogel. ACS Omega 2018, 3, 631–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanno, T.; Uyama, H. Unique leafy morphology of poly(lactic acid) monoliths controlled via novel phase separation technology. RSC Adv. 2017, 7, 33726–33732. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, T.; Hosoda, N.; Uyama, H. Fabrication of Porous Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Monoliths via Thermally Induced Phase separation. Polymers 2016, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Sakamoto, J.; van der Vlies, A.J.; Hasegawa, U.; Uyama, H. Phase Separation Approach to a Reactive Polycarbonate Monolith for “Click” Modifications. Polymer 2015, 66, 52–57. [Google Scholar] [CrossRef]
- Yoneda, S.; Hang, W.; Hasegawa, U.; Uyama, H. Facile fabrication of poly(methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency. Polymer 2014, 55, 3212–3216. [Google Scholar] [CrossRef]
- Xin, Y.; Uyama, H. Fabrication of Polycarbonate and Poly(3-hydroxybutyrate-co-hydroxyhexanoate) Blend Monolith via Non-solvent-induced Phase Separation Method. Chem. Lett. 2012, 41, 1509–1511. [Google Scholar] [CrossRef]
- Xin, Y.; Fujimoto, T.; Uyama, H. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer 2012, 53, 2847–2853. [Google Scholar] [CrossRef]
- Moulijn, J.A.; Kreutzer, M.T.; Nijhuis, T.A.; Kapteijn, F. Chapter 5—Monolithic Catalysts and Reactors: High Precision with Low Energy Consumption. Adv. Catal. 2011, 54, 249–327. [Google Scholar]
- Matsumoto, H.; Seto, H.; Akiyoshi, T.; Shibuya, M.; Hoshino, Y.; Miura, Y. Macroporous Monolith with Polymer Gel Matrix as Continuous-flow Catalytic Reactor. Chem. Lett. 2017, 46, 1065–1067. [Google Scholar] [CrossRef]
- Alimi, Q.A.; Akinnawo, C.A.; Meijboom, R. Monolith catalyst design via 3D printing: A reusable support for modern palladium-catalyzed cross-coupling reaction. New J. Chem. 2020, 44, 18867–18878. [Google Scholar] [CrossRef]
- Lee, K.M.; Kim, H.J.; Kang, C.S.; Tojo, T.; Chae, J.A.; Cha, M.C.; Yang, K.S.; Kim, Y.A.; Kim, H. Preparation of carbon-containing, compressible, microporous, polymeric monoliths that regulate macroscopic conductivity. Polym. Chem. 2019, 10, 852–859. [Google Scholar] [CrossRef]
- Okada, K.; Maruyama, J.; Uyama, H. Fabrication and Electrochemical Capacitive Behaviors of a Carbon Nanotube-Coated Polymer Monolith. Electrochemistry 2013, 81, 789–791. [Google Scholar] [CrossRef] [Green Version]
- Uehara, F.; Matsumoto, A. Metal-resin bonding mediated by epoxy monolith layer. Appl. Adhes. Sci. 2016, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Buchmeiser, M.R. Monolithic biocompatible and biodegradable scaffolds for tissue engineering. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2219–2227. [Google Scholar] [CrossRef]
- Hayward, A.S.; Eissa, A.M.; Maltman, D.J.; Sano, N.; Przyborski, S.A.; Carmeron, N.R. Galctose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian Hepatocytes. Biomacromolecules 2013, 14, 4271–4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P.A. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat. Commun. 2021, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Naga, N.; Sato, M.; Mori, K.; Nageh, H.; Nakano, T. Synthesis of Network Polymers by Means of Addition Reactions of Multifunctional-Amine and Poly(ethylene glycol) Diglycidyl Ether or Diacrylate Compounds. Polymers 2020, 12, 2047. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, T.; Naga, N. Synthesis and Properties of Organic-Inorganic Hybrid Porous Polymers Obtained with Click Addition Reactions of Thiol-Functionalized Random Type Silsesquioxane by and Diacrylate or Diisocyanate Compounds. Open J. Polym. Chem. 2020, 10. [Google Scholar] [CrossRef]
- Naga, N.; Miyanaga, T.; Wang, Y.; Nakano, T. Synthesis and properties of σ-π conjugated porous polymers obtained with Mizoroki–Heck reaction of tetra vinyl cyclic siloxane with dibromo fluorene. J. Polym. Sci. 2020, 58, 2301–2309. [Google Scholar] [CrossRef]
- Naga, N.; Inose, D.; Ishida, T.; Kubota, K.; Nageh, H.; Nakano, T. Synthesis of polymer networks by means of addition reactions of tri-amine and poly(ethylene glycol)diacrylate or diglycidyl ether compounds. Polym. Bull. 2020. [Google Scholar] [CrossRef]
- Naga, N.; Fujioka, S.; Inose, D.; Ahmed, K.; Nageh, H.; Nakano, T. Synthesis and properties of porous polymers synthesized by Michael addition reactions of multi-functional acrylate, diamine, and dithiol compounds. RSC Adv. 2020, 20, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Naga, N.; Michida, R.; Kudo, S.; Nagami, Y.; Moriyama, K.; Nageh, H.; Furukawa, H.; Nakano, T. Synthesis of joint-linker type gels and porous polymers by addition reactions of multi-functional thiol and alkyl diacrylate, diisocyanate compounds. Mater. Today Commun. 2019, 18, 153–162. [Google Scholar] [CrossRef]
- Naga, N.; Hasegawa, K.; Nageh, H.; Nakano, T. Synthesis and properties of degradable gels and porous polymers including acetal group in the network structure by addition reaction of multi-functional phenols and divinyl ether compounds. Polym. Bull. 2020, 77, 5631–5645. [Google Scholar] [CrossRef]
- Cameron, N.R.; Sherrington, D.C. High Internal Phase Emulsions (HIPEs)- Structure, Properties and Use in Polymer Preparation, Advances in Polymer Science book series, polymer. Biopolym. Liquid Cryst. Polym. Phase Emuls. 1996, 126, 163–214. [Google Scholar]
- Chiu, W.T.; Tahara, Y.; Chen, C.Y.; Chang, T.F.M.; Hashimoto, T.; Kurosu, H.; Sone, M. A Supercritical CO2 Promoted Electroless Ni-P Plating on Silk and Their Fundamental Characteristics Investigations. J. Electron. Soc. 2017, 164, D406. [Google Scholar] [CrossRef]
- Chiu, W.T.; Tahara, Y.; Chen, C.Y.; Chang, T.F.M.; Hashimoto, T.; Kurosu, H.; Sone, M. Fundamental Property Assessments of Biocompatible Silk–Pt Composite Prepared by Supercritical Carbon Dioxide Promoted Electroless Plating. Ind. Eng. Chem. Res. 2017, 56, 8864–8871. [Google Scholar] [CrossRef]
- Fedors, R.F. A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 1974, 14, 147–154. [Google Scholar] [CrossRef]
- Seshimo, M.; Hirai, T.; Rahman, M.M.; Ozawa, M.; Sone, M.; Sakurai, M.; Higo, Y.; Kameyama, H. Functionally graded Pd/γ-alumina composite membrane fabricated by electroless plating with emulsion of supercritical CO2. J. Membr. Sci. 2009, 342, 321–326. [Google Scholar] [CrossRef]
Monomer Concentration [wt %] | AM4/HAD Feed Ratio [mol/mol] | Acryloyl b [mmol/L] | Young’s Modulus [kPa] | Surface Morphology | Diameter c [μm] |
---|---|---|---|---|---|
20 | 1/2 (Case I) | 1.3 | 93 | spheres | 1.6–5.0 |
25 | 1/2 (Case I) | 1.7 | 101 | Spheres & holes | 2.9–4.3 2.3–21.0 |
30 | 1/2 (Case I) | 2.0 | 240 | holes | 2.1–52.0 |
30 | 1/1 (Case II) | 2.5 | 328 | holes | 1.1–9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naga, N.; Ito, M.; Mezaki, A.; Tang, H.-C.; Chang, T.-F.M.; Sone, M.; Nageh, H.; Nakano, T. Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. Materials 2021, 14, 800. https://doi.org/10.3390/ma14040800
Naga N, Ito M, Mezaki A, Tang H-C, Chang T-FM, Sone M, Nageh H, Nakano T. Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. Materials. 2021; 14(4):800. https://doi.org/10.3390/ma14040800
Chicago/Turabian StyleNaga, Naofumi, Minako Ito, Aya Mezaki, Hao-Chun Tang, Tso-Fu Mark Chang, Masato Sone, Hassan Nageh, and Tamaki Nakano. 2021. "Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine" Materials 14, no. 4: 800. https://doi.org/10.3390/ma14040800
APA StyleNaga, N., Ito, M., Mezaki, A., Tang, H. -C., Chang, T. -F. M., Sone, M., Nageh, H., & Nakano, T. (2021). Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. Materials, 14(4), 800. https://doi.org/10.3390/ma14040800