Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis
Abstract
:1. Introduction
2. Theoretical Basis and Equipment
Experimental Setup
3. Fatigue Tests
3.1. Modal Analysis
3.2. Strain Measurements on Specimens
3.3. Fracture
4. Conclusions and Remarks
- The series of fatigue tests carried out with three kurtosis values showed the clear influence of the kurtosis parameter on the fatigue life obtained. By maintaining the same variance of the load course, the average fatigue life was reduced tenfold when kurtosis was increased from three to four and from four to five.
- The presented fatigue calculations performed in the Ansys Workbench program only correspond to the experimental results obtained for the kurtosis value 3, which is noticeable in Figure 6. This implies the need to take into account the kurtosis parameter and to correct the obtained results of the FEM analysis for the non-Gaussian load.
- There was no correlation between the change in kurtosis and the type of fatigue crack. The majority of cracks were two-sided; one-sided cracks appeared randomly for different loading conditions.
- On the basis of the acceleration signals recorded on the specimen and on the sliding table, different kurtosis values were noted. These result from the occurrence of the first natural frequency of the system at 90 Hz, which is within the PSD load range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niesłony, A.; Růžička, M.; Papuga, J.; Hodr, A.; Balda, M.; Svoboda, J. Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes. Int. J. Fatigue 2012, 44, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Chen, H.; He, X. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration. Chin. J. Aeronaut. 2017, 30, 1895–1906. [Google Scholar] [CrossRef]
- Benasciutti, D.; Tovo, R. Fatigue life assessment in non-Gaussian random loadings. Int. J. Fatigue 2006, 28, 733–746. [Google Scholar] [CrossRef]
- Gao, D.-Y.; Yao, W.-X.; Wu, T. A damage model based on the critical plane to estimate fatigue life under multi-axial random loading. Int. J. Fatigue 2019, 129, 104729. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Han, Q.; Li, J.; Lacidogna, G. Research on the Scope of Spectral Width Parameter of Frequency Domain Methods in Random Fatigue. Appl. Sci. 2020, 10, 4715. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, H.; He, X.; Zheng, W. Probability distributions control for multi-input multi-output stationary non-Gaussian random vibration test. J. Vib. Control 2018, 24, 5201–5210. [Google Scholar] [CrossRef]
- Niesłony, A.; Macha, E. Spectral Method in Multiaxial Random Fatigue; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Celikoglu, A.; Tirnakli, U. Skewness and kurtosis analysis for non-Gaussian distributions. arXiv 2014, arXiv:1412.1293. [Google Scholar] [CrossRef] [Green Version]
- Kihm, F.; Ferguson, N.; Antoni, J. Fatigue Life from Kurtosis Controlled Excitations. Procedia Eng. 2015, 133, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Braccesi, C.; Cianetti, F.; Lori, G.; Pioli, D. The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress. Int. J. Fatigue 2009, 31, 766–775. [Google Scholar] [CrossRef]
- Celikoglu, A.; Tirnakli, U. Comment on “Universal relation between skewness and kurtosis in complex dynamics”. Phys. Rev. E 2015, 6, 066801. [Google Scholar] [CrossRef] [Green Version]
- Krasil’Nikov, A.I. Class of non-Gaussian distributions with zero skewness and kurtosis. Radioelectron. Commun. Syst. 2013, 56, 312–320. [Google Scholar] [CrossRef]
- Kihm, F.; Rizzi, S.; Ferguson, N.; Halfpenny, A. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and It’s Influence on Fatigue Life. Presentedon RASD 2013 (30/06/13–02/07/13). July 2013. Available online: https://www.ocs.soton.ac.uk/index.php/rasdconference/RASD2013/paper/view/1006 (accessed on 12 August 2020).
- Steinwolf, A.; Cornelis, B.; Peeters, B.; Van Der Auweraer, H.; Rivola, A.; Troncossi, M. On the Use of Kurtosis Control Methods in Shaker Testing for Fatigue Damage. J. Test. Evaluation 2019, 48, 538–556. [Google Scholar] [CrossRef]
- Zanellati, D.; Benasciutti, D.; Tovo, R. Vibration fatigue tests by tri-axis shaker: Design of an innovative system for uncoupled bending/torsion loading. Procedia Struct. Integr. 2018, 8, 92–101. [Google Scholar] [CrossRef]
- Khalij, L.; Gautrelet, C.; Guillet, A. Fatigue curves of a low carbon steel obtained from vibration experiments with an electrodynamic shaker. Mater. Des. 2015, 86, 640–648. [Google Scholar] [CrossRef]
- Macek, W.; Owsiński, R.; Trembacz, J.; Branco, R. Three-dimensional fractographic analysis of total fracture areas in 6082 aluminium alloy specimens under fatigue bending with controlled damage degree. Mech. Mater. 2020, 147, 103410. [Google Scholar] [CrossRef]
- Niesłony, A.; Böhm, M.; Owsiński, R. Formulation of multiaxial fatigue failure criteria for spectral method. Int. J. Fatigue 2020, 135, 105519. [Google Scholar] [CrossRef]
- Niesłony, A.; Owsiński, R.; Dziura, A. Methods of description of random loading in fatigue life calculation. Fourth Huntsville gamma-ray burst symposium 2018, 2028, 020013. [Google Scholar] [CrossRef]
- Kurek, A.; Kurek, M.; Koziarska, J.; Vantadori, S.; Łagoda, T. Fatigue characteristics of 6082-T6 aluminium alloy obtained in tension-compression and oscillatory bending tests. J. Mach. Constr. Maint.—Probl. Eksploat. 2018. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-d4de0dcc-7e49-43ab-89ba-588bb28ee158 (accessed on 12 August 2020).
- MIL STD 810 | Vibration. CELAB. Available online: https://celab.com/en/laboratory/environmental-tests/mil-std-810-vibration/ (accessed on 12 August 2020).
- Lachowicz, C.T.; Owsiński, R. Comparative Analysis of Fatigue Energy Characteristics of S355J2 Steel Subjected to Multi-Axis Loads. Materials 2020, 13, 2470. [Google Scholar] [CrossRef] [PubMed]
Loading | |||
---|---|---|---|
1.1 | 0.015125 | 539 | 5.46 |
1.2 | 0.018 | 588 | 5.98 |
1.3 | 0.021125 | 637 | 6.47 |
1.4 | 0.0245 | 684 | 6.97 |
Loading | |||
---|---|---|---|
0.85 | 0.009031 | 547 | 5.58 |
1.0 | 0.0125 | 643 | 6.56 |
1.1 | 0.015125 | 708 | 7.22 |
1.2 | 0.018 | 772 | 7.87 |
Loading | |||
---|---|---|---|
0.85 | 0.009031 | 649 | 6.62 |
0.9 | 0.010125 | 667 | 7.01 |
1.0 | 0.0125 | 764 | 7.79 |
Kurtosis | Loading | Fatigue Life | Surface Roughness Ra | Specimen Diameter mm | Crack Type Single/Double |
---|---|---|---|---|---|
3.0 | 1.1 | 7500 | 0.342 | 7.98 | Single |
1.1 | 26,100 | 0.368 | 7.97 | Single | |
1.2 | 23,100 | 0.573 | 8.01 | Double | |
1.2 | 900 | 0.383 | 7.97 | Double | |
1.2 | 12,600 | 0.303 | 7.94 | Double | |
1.3 | 2460 | 0.278 | 7.94 | Double | |
1.3 | 4680 | 0.397 | 8.01 | Double | |
1.3 | 2100 | 0.212 | 7.96 | Double | |
1.4 | 660 | 0.446 | 7.97 | Double | |
1.4 | 1200 | 0.351 | 7.94 | Double | |
1.4 | 1020 | 0.175 | 7.97 | Double | |
4.0 | 0.85 | nc | 0.367 | 7.98 | --- |
1.0 | 2220 | 0.294 | 7.96 | Double | |
1.0 | 1440 | 0.431 | 7.99 | Double | |
1.1 | 1380 | 0.527 | 7.97 | Single | |
1.1 | 15,660 | 0.347 | 7.99 | Double | |
1.1 | 660 | 0.581 | 8.02 | Double | |
1.1 | 1320 | 0.289 | 7.98 | Double | |
1.2 | 900 | 0.263 | 8.00 | Double | |
1.2 | 2700 | 0.388 | 7.99 | Double | |
1.2 | 480 | 0.268 | 8.01 | Double | |
5.0 | 0.85 | 3660 | 0.398 | 7.98 | Double |
0.85 | 15,240 | 0.496 | 7.99 | Single | |
0.85 | 16,380 | 0.243 | 8.00 | Single | |
1.0 | 600 | 0.409 | 8.01 | Double | |
1.0 | 240 | 0.492 | 8.00 | Double | |
1.0 | 900 | 0.278 | 7.96 | Double | |
0.9 | nc | 0.296 | 7.98 | --- | |
0.9 | 1380 | 0.411 | 8.01 | Single | |
0.9 | nc | 0.364 | 7.99 | --- | |
0.9 | 480 | 0.297 | 7.98 | Double |
Loading gRMS | Amplitude | Experiment Duration, s Ku = 3 | Experiment Duration, s Ku = 4 | Experiment Duration, s Ku = 5 | Numerical Prediction, s |
---|---|---|---|---|---|
0.85 | 0.009031 | – | 28,800 * | 3660 15,240 16,380 | 88,389 |
0.9 | 0.010125 | – | – | 1380 480 28,800 * 28,800 * | 55,476 |
1.0 | 0.0125 | – | 2220 1440 | 600 240 900 | 20,071 |
1.1 | 0.015125 | 7500 26,100 | 1380 15,660 660 1320 | – | 8414 |
1.2 | 0.018 | 23,100 900 12,600 | 900 2700 480 | – | 3804 |
1.3 | 0.021125 | 2460 4680 2100 | – | – | 1833 |
1.4 | 0.0245 | 660 1200 1020 | – | – | 932 |
Quantity. | Global | Neck Region |
---|---|---|
Nodes | 139,507 | 130,436 |
Elements | 65,391 | 63,709 |
Element size | 4 mm | 1 mm |
Refinement level | - | 3 |
Elements Types | HEX20, TET10 (>95%) |
Mode No. | Frequency Hz | Type | Shape |
---|---|---|---|
1 | 90.039 | Bending (YZ plane) | |
2 | 90.057 | Bending (XY plane) | |
3 | 207.88 | Twisting (Y-axis) | |
4 | 1015.5 | Complex (YZ plane) | |
5 | 1017.9 | Complex (XY plane) | |
6 | 1951 | Tension (Y-axis) |
Ku = 3 (Figure 10) | Ku = 4 (Figure 10) | Ku = 5 (Figure 12) | |
---|---|---|---|
Loading level | 1.2 g RMS | 1.2 g RMS | 1.0 g RMS |
Test duration | 902 s | 904 s | 900 s |
Total fracture * |
Ku = 3 (Figure 10) | Ku = 4 (Figure 10) | Ku = 5 (Figure 12) | |
---|---|---|---|
single-sided fracture | |||
Loading level | 1.1 g RMS | 1.1 g RMS | 0.85 g RMS |
Test duration | 26,110 s | 1380 s | 16,380 s |
Total fracture * single-sided |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owsiński, R.; Niesłony, A. Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis. Materials 2021, 14, 856. https://doi.org/10.3390/ma14040856
Owsiński R, Niesłony A. Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis. Materials. 2021; 14(4):856. https://doi.org/10.3390/ma14040856
Chicago/Turabian StyleOwsiński, Robert, and Adam Niesłony. 2021. "Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis" Materials 14, no. 4: 856. https://doi.org/10.3390/ma14040856
APA StyleOwsiński, R., & Niesłony, A. (2021). Fatigue Test of 6082 Aluminum Alloy under Random Load with Controlled Kurtosis. Materials, 14(4), 856. https://doi.org/10.3390/ma14040856