Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement and Preparation of Biological Tissue
2.2. Antibiotic and UV Treatment
- i.
- Antibiotic treatment: Specimens were allowed to interact with the gentamicin injectable solution (KRKA, Novo Mesto, Slovenia) concentrations of 40 and 80 mg/mL, for 1 h, and then they were washed with PBS, rinsed with sterile distilled water, flattened on a cellulose support and stored in a refrigerator until FTIR and AFM investigations. The samples were labeled AG40 and AG80, respectively, according to each concentration.
- ii.
- UV treatment: Specimens were exposed to UV in air using a GL4 germicidal lamp (Philips TUV 6W G6) at no more than 254 nm, for 1 h, and then kept in a refrigerator until further investigations. The samples were labeled AUV.
- iii.
- Combined antibiotic/UV treatment: Immediately after gentamicin treatment (concentration 40 mg/mL), specimens were exposed to the UV treatment described above and then kept in a refrigerator until further investigations. The samples were labeled AGUV.
- iv.
- The control sample was the natural amniotic membrane without any treatment, labeled AMN.
2.3. Histological and Immunohistochemical Examination
2.4. FTIR Spectroscopy
2.5. AFM Measurement
2.6. Enzymatic (Collagenase) Degradation Assay
2.7. Clinical Case
2.8. Statistics
3. Results
3.1. Histological Examination
3.2. FTIR Spectroscopy
3.3. Nanotopography: AFM Examination
3.4. Collagenase Digestion Assay
3.5. Clinical Case
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, G.S.; Vitresia, H. Multilayer amniotic membrane transplantation for ocular reconstruction (Chapter 18). In Human Amniotic Membrane: Basic Science and Clinical Application; Abdul, A.N., Nazly, H., Norimah, Y., Eds.; World Scientific Publishing Co.: Singapore, 2017; p. 289. [Google Scholar]
- Niknejad, H.; Peirovi, H.; Jorjani, M.; Ahmadiani, A.; Ghanavi, J.; Seifalian, A.M. Properties of amniotic membrane for potential use in tissue engineering. Eur. Cells Mater. 2008, 15, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Tighe, S.; Mead, O.G.; Lee, A.; Tseng, S.C.G. Basic science review of birth tissue uses in ophthalmology. Taiwan J. Ophthalmol. 2020, 10, 3–12. [Google Scholar] [CrossRef]
- Lim, L.S.; Poh, R.W.Y.; Riau, A.K.; Beuerman, R.W.; Tan, D.; Mehta, J.S. Biological and Ultrastructural Properties of Acelagraft, a Freeze-Dried γ-Irradiated Human Amniotic Membrane. Arch. Ophthalmol. 2010, 128, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Inge, E.; Talmi, Y.P.; Sigler, L.; Finkelstein, Y.; Zohar, Y. Antibacterial properties of human amniotic membranes. Placenta 1991, 12, 285–288. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, D.H.-K.; Hwang, D.G.; Kim, W.-S.; Zhang, F. Identification of Antiangiogenic and Antiinflammatory Proteins in Human Amniotic Membrane. Cornea 2000, 19, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.; Thomas, B.S. Amniotic membrane: A novel material for regeneration and repair. J. Biomim. Biomater. Tissue Eng. 2013, 18, 1–8. [Google Scholar]
- Tehrani, F.D.; Firouzeh, A.; Shabani, I.; Shabani, A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front. Bioeng. Biotechnol. 2021, 8. [Google Scholar] [CrossRef]
- Rahman, I.; Said, D.G.; Maharajan, V.; Dua, H.S. Amniotic membrane in ophthalmology: Indications and limitations. Eye 2009, 23, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şapte, E.; Costea, C.F.; Cărăuleanu, A.; Dancă, C.; Dumitrescu, G.F.; Dimitriu, G.; Chihaia, M.A.; Buzdugă, C.M.; Cucu, A.; Turliuc, M.D. Histological, immunohistochemical and clinical considerations on amniotic membrane transplant for ocular surface reconstruction. Romanian J. Morphol. Embryol. Rev. Roum. de Morphol. et Embryol. 2017, 58, 363–369. [Google Scholar]
- Utheim, T.P.; Øygunn, A.U.; Salvanos, P.; Jackson, C.J.; Schrader, S.; Geerling, G.; Sehic, A. Concise Review: Altered Versus Unaltered Amniotic Membrane as a Substrate for Limbal Epithelial Cells. Stem. Cells Transl. Med. 2018, 7, 415–427. [Google Scholar] [CrossRef]
- Cooke, M.; Tan, E.; Mandrycky, C.; He, H.; O’Connell, J.; Tseng, S. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J. Wound Care 2014, 23, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Satake, Y.; Shimmura, S.; Shimazaki, J. Cultivated autologous limbal epithelial transplantation for symptomatic bullous keratopathy. BMJ Case Rep. 2009, 2009. [Google Scholar] [CrossRef] [Green Version]
- Fujisato, T.; Tomihata, K.; Tabata, Y.; Iwamoto, Y.; Burczak, K.; Ikada, Y. Cross-linking of amniotic membranes. J. Biomater. Sci. Polym. Ed. 1999, 10, 1171–1181. [Google Scholar] [CrossRef]
- Lai, J.-Y. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation. Mater. Sci. Eng. C 2014, 45, 313–319. [Google Scholar] [CrossRef]
- Jariashvili, K.; Madhan, B.; Brodsky, B.; Kuchava, A.; Namicheishvili, L.; Metreveli, N. Uv damage of collagen: Insights from model collagen peptides. Biopolymers 2012, 97, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Yang, S.; Zhai, H.-L.; Zhang, Y.-Y.; Cui, C.-X.; Wang, J.-Y.; Xie, L.-X. A comparative study of risk factors for corneal infection in diabetic and non-diabetic patients. Int. J. Ophthalmol. 2018, 11, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Roiu, G.; Cavalu, S.; Teusdea, A.; Petricas-Heredea, D.A.; Fratila, O. Assessment of Antibiotic Influence on Structural Modifications of Amniotic Membrane by FTIR Spectroscopy. Mater. Plast. 2020, 57, 191–198. [Google Scholar] [CrossRef]
- Cavalu, S.; Popa, A.; Bratu, I.; Borodi, G.; Maghiar, A. New Evidences of Key Factors Involved in “Silent Stones” Etiopathogenesis and Trace Elements: Microscopic, Spectroscopic, and Biochemical Approach. Biol. Trace Elem. Res. 2015, 168, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Bridelli, M.G. Fourier Transform Infrared Spectroscopy in the Study of Hydrated Biological Macromolecules (Chapter). In Fourier Transforms-High-Tech Application and Current Trends; Nikolic, G.S., Cakic, M.D., Cvetkovic, D.J., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Belbachir, K.; Noreen, R.; Gouspillou, G.; Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Sripriya, R.; Kumar, R. Denudation of human amniotic membrane by a novel process and its characterisations for biomedical applications. Prog. Biomater. 2016, 5, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Nishida, Y.; Yoshida, S.; Li, H.J.; Higuchi, Y.; Takai, N.; Miyakawa, I. FTIR spectroscopic analyses of human placental membranes. Biopolymers 2000, 62, 22–28. [Google Scholar] [CrossRef]
- Stancanelli, R.; Ficarra, R.; Cannavà, C.; Guardo, M.; Calabrò, M.; Ficarra, P.; Ottana, R.; Maccari, R.; Crupi, V.; Majolino, D.; et al. UV–vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 2008, 47, 704–709. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Lue, S.J.; Cheng, H.-Y.; Ma, D.H.-K. Effect of matrix nanostructure on the functionality of carbodiimide cross-linked amniotic membranes as limbal epithelial cell scaffolds. J. Biomed. Nanotechnol. 2013, 9, 2048–2062. [Google Scholar] [CrossRef]
- Tunç, S.; Maitz, M.F.; Steiner, G.; Vazquez, L.; Pham, M.T.; Salzer, R. In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids Surf. B Biointerfaces 2005, 42, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Magyari, K.; Vanea, E.; Baia, L.; Simon, V. Attachment and conformational changes of collagen on bioactive glass surface. Bio-Med. Mater. Eng. 2016, 27, 63–74. [Google Scholar] [CrossRef]
- Fan, J.; Wang, M.; Zhong, F. Improvement of Amniotic Membrane Method for the Treatment of Corneal Perforation. BioMed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekaris, I.; Gabrić, N.; Mravičić, I.; Karaman, Ž.; Katušić, J.; Lazić, R.; Špoljarić, N. Multilayer vs. monolayer amniotic membrane transplantation for deep corneal ulcer treatment. Coll. Antropol. 2001, 25, 23–28. [Google Scholar] [PubMed]
- Jhanji, V.; Young, A.L.; Mehta, J.S.; Sharma, N.; Agarwal, T.; Vajpayee, R.B. Management of Corneal Perforation. Surv. Ophthalmol. 2011, 56, 522–538. [Google Scholar] [CrossRef]
- Cauchi, P.A.; Ang, G.S.; Azuara-Blanco, A.; Burr, J.M. A Systematic Literature Review of Surgical Interventions for Limbal Stem Cell Deficiency in Humans. Am. J. Ophthalmol. 2008, 146, 251–259.e2. [Google Scholar] [CrossRef]
- Krysik, K.; Dobrowolski, D.; Wylegala, E.; Lyssek-Boron, A. Amniotic Membrane as a Main Component in Treatments Supporting Healing and Patch Grafts in Corneal Melting and Perforations. J. Ophthalmol. 2020, 2020, 4238919-7. [Google Scholar] [CrossRef] [Green Version]
- McDonald, E.M.; Ram, F.S.F.; Patel, D.V.; McGhee, C.N.J. Topical antibiotics for the management of bacterial keratitis: An evidence-based review of high quality randomized controlled trials. Br. J. Ophthalmol. 2014, 98, 1470–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.; Barza, M. The Evolution of Antibiotic Therapy for Bacterial Conjunctivitis and Keratitis: 1970–2000. Cornea 2000, 19, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Nahata, M.C.; Hipple, T.F. Gentamycin sulfate fortified ophthalmic drops. Pediatr. Drug Formul. 2004, 5, 130. [Google Scholar]
- Baum, J. Treatment of bacterial ulcers of the cornea in the rabbit: A comparison of administration by eye drops and subconjunctival injections. Trans. Am. Ophthalmol. Soc. 1982, 80, 369–390. [Google Scholar] [PubMed]
- Kanellopoulos, A.J.; Miller, F.; Wittpenn, J.R. Deposition of Topical Ciprofloxacin to Prevent Re-epithelialization of a Corneal Defect. Am. J. Ophthalmol. 1994, 117, 258–259. [Google Scholar] [CrossRef]
- Ortolani, F.; Giordano, M.; Marchini, M. A model for type II collagen fibrils: Distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains. Biopolymers 2000, 54, 448–463. [Google Scholar] [CrossRef]
- Stylianou, A.; Yova, D.; Alexandratou, E. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging. Mater. Sci. Eng. C 2014, 45, 455–468. [Google Scholar] [CrossRef]
- Rabotyagova, O.S.; Cebe, P.; Kaplan, D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C 2008, 28, 1420–1429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Du, T.; Mu, G.; Wang, J.; Gao, X.; Long, F.; Wang, Q. Evaluation and ultrastructural changes of amniotic membrane fragility after UVA/riboflavin cross-linking and its effects on biodegradation. Medicine 2020, 99, e20091. [Google Scholar] [CrossRef]
- Spoerl, E.; Wollensak, G.; Reber, F.; Pillunat, L. Cross-Linking of Human Amniotic Membrane by Glutaraldehyde. Ophthalmic Res. 2004, 36, 71–77. [Google Scholar] [CrossRef]
- Figueiredo, G.; Bojic, S.; Rooney, P.; Wilshaw, S.-P.; Connon, C.; Gouveia, R.; Paterson, C.; Lepert, G.; Mudhar, H.; Figueiredo, F.; et al. Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells. Acta Biomater. 2017, 61, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Cavalu, S.; Simon, V. Proteins adsorption to orthopedic biomaterials: Vibrational spectroscopy evidence. J. Optoelectron. Adv. Mater. 2007, 9, 3297–3302. [Google Scholar]
- Kontomaris, S.V.; Yova, D.; Stylianou, A.; Balogiannis, G. The effects of UV irradiation on collagen D-band revealed by atomic force microscopy. Scanning 2014, 37, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Mohd, S.; Ghazali, M.I.; Yusof, N.; Sulaiman, S.; Ramalingam, S.; Kamarul, T.; Mansor, A. Quantifying the ultrastructure changes of air-dried and irradiated human amniotic membrane using atomic force microscopy: A preliminary study. Cell Tissue Bank. 2018, 19, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Spoerl, E.; Wollensak, G.; Seiler, T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr. Eye Res. 2004, 29, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jones, R.R.; Mi, S.; Foster, J.; Alcock, S.G.; Hamley, I.W.; Connon, C.J. The mechanical properties of amniotic membrane influence its effect as a biomaterial for ocular surface repair. Soft Matter 2012, 8, 8379–8387. [Google Scholar] [CrossRef] [Green Version]
- Lazzaro, D.R.; E Rizzuti, A.; Goldenberg, A. Amniotic membrane allografts: Development and clinical utility in ophthalmology. Chronic Wound Care Manag. Res. 2014, 1, 67. [Google Scholar] [CrossRef] [Green Version]
- Röck, T.; Braumkamp, M.; Bartz-Schmidt, K.U.; Röck, D. A retrospective study to compare the recurrence rate after treatment of pterygium by conjunctival autograft, primary closure and amniotic membrane transplantation. Med. Sci. Monit. 2019, 25, 7976–7981. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalu, S.; Roiu, G.; Pop, O.; Heredea, D.A.P.; Costea, T.O.; Costea, C.F. Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence. Materials 2021, 14, 863. https://doi.org/10.3390/ma14040863
Cavalu S, Roiu G, Pop O, Heredea DAP, Costea TO, Costea CF. Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence. Materials. 2021; 14(4):863. https://doi.org/10.3390/ma14040863
Chicago/Turabian StyleCavalu, Simona, George Roiu, Ovidiu Pop, Denisa A. Petricas Heredea, Traian Octavian Costea, and Claudia Florida Costea. 2021. "Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence" Materials 14, no. 4: 863. https://doi.org/10.3390/ma14040863
APA StyleCavalu, S., Roiu, G., Pop, O., Heredea, D. A. P., Costea, T. O., & Costea, C. F. (2021). Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence. Materials, 14(4), 863. https://doi.org/10.3390/ma14040863