Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Scanning by the X-ray Computed Tomography
2.3. Converting the Scanned Images to 3D STL Files
2.4. Converting to Smoothed Solid CAD Models
2.5. Hexahedron Dominant Meshing
2.6. Finite Element Analyses
2.7. Strut Material Model
2.8. Boundary Conditions
2.9. Experimental Measurement for the Macroscopic Stress Strain Relationships
3. Results
3.1. The Deformed Shapes of the Models
3.2. Macroscopic Stress-Strain Relationships
4. Discussions
5. Conclusions
- The investigated foams were scanned by X-ray computed tomography and their structures were captured in 2D cross-section images.
- The observed cross-section images were converted to 3D CAD models using Image J and Autodesk, Inc software products. The smoothed CAD models were analysed with commercial FEA software (Ansys).
- Foam specimens were experimentally tested under uniaxial compression.
- Specimen deformations were analysed by the implicit finite element method with the hexahedron and tetrahedron mixed meshing.
- The mechanical behaviour of foam specimens under compressive loading was sufficiently captured at 0.25 nominal strain and within a reasonable error margin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed tomography |
FEA | Finite element analysis |
PUF | Polyurethane foam |
References
- Gibson, L.J.; Ashby, M.F. The mechanics of foams: Basic results. In Cellular Solids: Structure and Properties, 2nd ed.; Cambridge Solid State Science Series; Cambridge University Press: Cambridge, UK, 1997; pp. 175–234. [Google Scholar] [CrossRef]
- Zhu, H.X.; Knott, J.F.; Mills, N.J. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phys. Solids 1997, 45, 319–343. [Google Scholar] [CrossRef]
- Zhu, H.X.; Mills, N.J.; Knott, J.F. Analysis of the high strain compression of open-cell foams. J. Mech. Phys. Solids 1997, 45, 1875–1899. [Google Scholar] [CrossRef]
- Mills, N.J.; Zhu, H.X. The high strain compression of closed-cell polymer foams. J. Mech. Phys. Solids 1999, 47, 669–695. [Google Scholar] [CrossRef]
- Zhu, H.X.; Mills, N.J. Modelling the creep of open-cell polymer foams. J. Mech. Phys. Solids 1999, 47, 1437–1457. [Google Scholar] [CrossRef]
- Laroussi, M.; Sab, K.; Alaoui, A. Foam mechanics: Nonlinear response of an elastic 3D-periodic microstructure. Int. J. Solids Struct. 2002, 39, 3599–3623. [Google Scholar] [CrossRef]
- Gong, L.; Kyriakides, S.; Jang, W.Y. Compressive response of open-cell foams. Part I: Morphology and elastic properties. Int. J. Solids Struct. 2005, 42, 1355–1379. [Google Scholar] [CrossRef]
- Gong, L.; Kyriakides, S. Compressive response of open cell foams part II: Initiation and evolution of crushing. Int. J. Solids Struct. 2005, 42, 1381–1399. [Google Scholar] [CrossRef]
- Gong, L.; Kyriakides, S.; Triantafyllidis, N. On the stability of Kelvin cell foams under compressive loads. J. Mech. Phys. Solids 2005, 53, 771–794. [Google Scholar] [CrossRef]
- Demiray, S.; Becker, W.; Hohe, J. Numerical determination of initial and subsequent yield surfaces of open-celled model foams. Int. J. Solids Struct. 2007, 44, 2093–2108. [Google Scholar] [CrossRef]
- Okumura, D.; Okada, A.; Ohno, N. Buckling behavior of Kelvin open-cell foams under [0 0 1], [0 1 1] and [1 1 1] compressive loads. Int. J. Solids Struct. 2008, 45, 3807–3820. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Okumura, D.; Ohno, N. Yield and buckling behavior of Kelvin open-cell foams subjected to uniaxial compression. Int. J. Mech. Sci. 2010, 52, 377–385. [Google Scholar] [CrossRef]
- Ye, W.; Barbier, C.; Zhu, W.; Combescure, A.; Baillis, D. Macroscopic multiaxial yield and failure surfaces for light closed-cell foams. Int. J. Solids Struct. 2015, 60–70. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hobdell, J.R.; Windle, A.H. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater. 2000, 48, 4893–4900. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hobdell, J.R.; Windle, A.H. EEects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J. Mech. Phys. Solids 2001, 49, 857–870. [Google Scholar] [CrossRef]
- Zhu, H.X.; Windle, A.H. Effects of cell irregularity on the high strain compression of open-cell foams. Acta Mater. 2002, 50, 1041–1052. [Google Scholar] [CrossRef]
- Zhu, W.; Blal, N.; Cunsolo, S.; Baillis, D. Micromechanical modeling of effective elastic properties of open-cell foam. Int. J. Solids Struct. 2017, 115–116, 61–72. [Google Scholar] [CrossRef]
- Marvi-Mashhadi, M.; Lopes, C.S.; LLorca, J. Effect of anisotropy on the mechanical properties of polyurethane foams: An experimental and numerical study. Mech. Mater. 2018, 124, 143–154. [Google Scholar] [CrossRef]
- Marvi-Mashhadi, M.; Lopes, C.S.; LLorca, J. Surrogate models of the influence of the microstructure on the mechanical properties of closed- and open-cell foams. J. Mater. Sci. 2018, 53, 12937–12948. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kraynik, A.M.; Kyriakides, S. On the microstructure of open-cell foams and its effect on elastic properties. Int. J. Solids Struct. 2008, 45, 1845–1875. [Google Scholar] [CrossRef] [Green Version]
- Storm, J.; Abendroth, M.; Emmel, M.; Liedke, T.; Ballaschk, U.; Voigt, C.; Sieber, T.; Kuna, M. Geometrical modelling of foam structures using implicit functions. Int. J. Solids Struct. 2013, 50, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Storm, J.; Abendroth, M.; Zhang, D.; Kuna, M. Geometry dependent effective elastic properties of open-cell foams based on kelvin cell models. Adv. Eng. Mater. 2013, 15, 1292–1298. [Google Scholar] [CrossRef]
- Zhang, D.; Abendroth, M.; Kuna, M.; Storm, J. Multi-axial brittle failure criterion using Weibull stress for open Kelvin cell foams. Int. J. Solids Struct. 2015, 75–76, 1–11. [Google Scholar] [CrossRef]
- Storm, J.; Abendroth, M.; Kuna, M. Numerical and analytical solutions for anisotropic yield surfaces of the open-cell Kelvin foam. Int. J. Mech. Sci. 2016, 105, 70–82. [Google Scholar] [CrossRef]
- Zhu, W.; Blal, N.; Cunsolo, S.; Baillis, D. Effective elastic properties of periodic irregular open-cell foams. Int. J. Solids Struct. 2018, 143, 155–166. [Google Scholar] [CrossRef]
- Zhu, W.; Blal, N.; Cunsolo, S.; Baillis, D.; Michaud, P.M. Effective elastic behavior of irregular closed-cell foams. Materials 2018, 11, 2100. [Google Scholar] [CrossRef] [Green Version]
- Storm, J.; Abendroth, M.; Kuna, M. Effect of morphology, topology and anisoptropy of open cell foams on their yield surface. Mech. Mater. 2019, 137, 103145. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kyriakides, S. On the crushing of aluminum open-cell foams: Part I. Experiments. Int. J. Solids Struct. 2009, 46, 617–634. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.Y.; Kyriakides, S. On the crushing of aluminum open-cell foams: Part II analysis. Int. J. Solids Struct. 2009, 46, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.Y.; Kyriakides, S.; Kraynik, A.M. On the compressive strength of open-cell metal foams with Kelvin and random cell structures. Int. J. Solids Struct. 2010, 47, 2872–2883. [Google Scholar] [CrossRef] [Green Version]
- Gaitanaros, S.; Kyriakides, S.; Kraynik, A.M. On the crushing response of random open-cell foams. Int. J. Solids Struct. 2012, 49, 2733–2743. [Google Scholar] [CrossRef] [Green Version]
- Gaitanaros, S.; Kyriakides, S. On the effect of relative density on the crushing and energy absorption of open-cell foams under impact. Int. J. Impact Eng. 2015, 82, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Gaitanaros, S.; Kyriakides, S.; Kraynik, A.M. On the crushing of polydisperse foams. Eur. J. Mech. A/Solids 2018, 67, 243–253. [Google Scholar] [CrossRef]
- Storm, J.; Abendroth, M.; Kuna, M. Influence of curved struts, anisotropic pores and strut cavities on the effective elastic properties of open-cell foams. Mech. Mater. 2015, 86, 1–10. [Google Scholar] [CrossRef]
- Barnes, A.T.; Ravi-Chandar, K.; Kyriakides, S.; Gaitanaros, S. Dynamic crushing of aluminum foams: Part I—Experiments. Int. J. Solids Struct. 2014, 51, 1631–1645. [Google Scholar] [CrossRef] [Green Version]
- Gaitanaros, S.; Kyriakides, S. Dynamic crushing of aluminum foams: Part II—Analysis. Int. J. Solids Struct. 2014, 51, 1646–1661. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Kyriakides, S. Multiaxial crushing of open-cell foams. Int. J. Solids Struct. 2019, 159, 239–256. [Google Scholar] [CrossRef]
- Jones, A.C.; Arns, C.H.; Sheppard, A.P.; Hutmacher, D.W.; Milthorpe, B.K.; Knackstedt, M.A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 2007, 28, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- John, Ł.; Janeta, M.; Rajczakowska, M.; Ejfler, J.; Łydżba, D.; Szafert, S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl)propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv. 2016, 6, 66037–66047. [Google Scholar] [CrossRef] [Green Version]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma 2012, 181–182, 22–29. [Google Scholar] [CrossRef]
- Patterson, B.M.; Henderson, K.; Gilbertson, R.D.; Tornga, S.; Cordes, N.L.; Chavez, M.E.; Smith, Z. Morphological and Performance Measures of Polyurethane Foams Using X-ray CT and Mechanical Testing. Microsc. Microanal. 2014, 20, 1284–1293. [Google Scholar] [CrossRef]
- Ulrich, D.; van Rietbergen, B.; Weinans, H.; Rüegsegger, P. Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech. 1998, 31, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.; Asahina, T.; Kang, K.J.; Im, S.; Lu, T.J. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mech. Mater. 2010, 42, 227–236. [Google Scholar] [CrossRef]
- Zhang, L.; Ferreira, J.M.F.; Olhero, S.; Courtois, L.; Zhang, T.; Maire, E.; Rauhe, J.C. Modeling the mechanical properties of optimally processed cordierite–mullite–alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Mater. 2012, 60, 4235–4246. [Google Scholar] [CrossRef]
- Natesaiyer, K.; Chan, C.; Sinha-Ray, S.; Song, D.; Lin, C.L.; Miller, J.D.; Garboczi, E.J.; Forster, A.M. X-ray CT imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: Insights into foam variability. J. Mater. Sci. 2015, 50, 4012–4024. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ansys® Academic Research Meshing, Release 19.2, Help System, Meshing User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2010.
- Ansys® Academic Research Mechanical, Release 19.2, Help System, Mechanical User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2010.
- Polymeric Materials, Cellular Flexible—Determination of Stress-Strain Characteristics in Compression—Part 1: Low-Density Materials (ISO Standard No. 3386-1:1986); International Organization for Standardization: Geneva, Switzerland, 1986.
Model A | Model B | Model C | |
---|---|---|---|
Nodes | 27,730 | 24,937 | 30,081 |
Tetrahedron elements | 10,873 | 11,586 | 12,041 |
Pyramid elements | 16,202 | 16,795 | 17,083 |
Hexahedron elements | 13,231 | 13,746 | 15,089 |
Hyperelasticity Models | |||
---|---|---|---|
Neo-Hookean | 1.89 | - | 0.0661 |
Mooney-Rivlin | 0.476 | 1.78 | 0.0554 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iizuka, M.; Goto, R.; Siegkas, P.; Simpson, B.; Mansfield, N. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams. Materials 2021, 14, 949. https://doi.org/10.3390/ma14040949
Iizuka M, Goto R, Siegkas P, Simpson B, Mansfield N. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams. Materials. 2021; 14(4):949. https://doi.org/10.3390/ma14040949
Chicago/Turabian StyleIizuka, Makoto, Ryohei Goto, Petros Siegkas, Benjamin Simpson, and Neil Mansfield. 2021. "Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams" Materials 14, no. 4: 949. https://doi.org/10.3390/ma14040949
APA StyleIizuka, M., Goto, R., Siegkas, P., Simpson, B., & Mansfield, N. (2021). Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams. Materials, 14(4), 949. https://doi.org/10.3390/ma14040949