Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions
Abstract
:1. Introduction
2. Current Situation: Landfills and Incineration
3. Reducing the Amount of Wastes: Service Time Extension
3.1. Durability of Blades: New Materials Extending the Blade Lifetime
3.2. Failure Control and Correction: Maintenance and Repair
4. Recycling of Wind Turbine Blade
4.1. Primary Recycling: Re-Use and Refurbishment
4.2. Secondary (Mechanical) Recycling
4.3. Tertiary Recycling (Recovery) of Wind Turbine Blades
5. Preventing Composite Wastes-1: Recyclable Polymers
5.1. Thermoplastics Composites for Wind Turbine Blades
5.2. Recyclable Thermosets
6. Preventing Composite Wastes-2: Bio-Based Composites
6.1. Wood and Wood Products
6.2. Bamboo Based Composites
6.3. Plant Based Composites and Bio-Based Polymers
7. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wind Energy in Europe: Outlook to 2023; WindEurope: Brussels, Belgium, 2019.
- Repowering and Lifetime Extension: Making the Most of Europe’s Wind Energy Resources; WindEurope: Brussels, Belgium, 2017.
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J.J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Knight, S. What to Do with Turbines after They Leave Support System. Available online: https://www.windpowermonthly.com/article/1671616/turbines-leave-support-system (accessed on 25 February 2021).
- Piel, J.H.; Stetter, C.; Heumann, M.; Westbomke, M.; Breitner, M.H. Lifetime Extension, Repowering or Decommissioning? Decision Support for Operators of Ageing Wind Turbines. J. Phys. Conf. Ser. 2019, 1222, 012033. [Google Scholar] [CrossRef]
- Andersen, N. Wind Turbine End-of-Life: Characterisation of Waste Material. Master’s Thesis, University of Gävle, Gävle, Sweden, 2015. [Google Scholar]
- Martin, C. Wind Turbine Blades Can’t Be Recycled, so They’re Piling up in Landfills. Bloomberg, 5.2.2020. Available online: https://www.bloomberg.com/ (accessed on 5 February 2020).
- Jensen, P.D.; Purnell, P.; Velenturf, A.P.M. Highlighting the need to embed circular economy in low carbon infrastructure decommissioning: The case of offshore wind, Sustainable Production and Consumption. ScienceDirect 2020, 24, 266–280. [Google Scholar]
- 10 Years Left to Prepare for Low Carbon Infrastructure Decommissioning. Available online: https://rrfw.org.uk/2020/08/18/low-carbon-infrastructure-decommissioning/ (accessed on 25 February 2021).
- Wiedemann, M.; Schreiner, C. Alte Windräder—Ein Ungelöstes Müllproblem? Available online: https://www.zdf.de/nachrichten (accessed on 27 December 2019).
- Stella, C. Unfurling the Waste Problem Caused by Wind Energy, NPR. 10 September 2019. Available online: https://www.npr.org/2019/09/10/759376113/unfurling-the-waste-problem-caused-by-wind-energy?t=1614410135094 (accessed on 25 February 2021).
- Snieckus, D. Cross-Sector Co-Op Key to Recycling Coming Wave of Used Wind Turbine Blades: Report. Available online: https://www.rechargenews.com (accessed on 30 May 2020).
- How to Make Wind Power Sustainable Again. Available online: https://www.lowtechmagazine.com/2019/06/ (accessed on 25 February 2021).
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Arias, F. Assessment of Present/Future Decommissioned Wind Blade Fiber-Reinforced Composite Material in the United States; City College of New York: New York, NY, USA, 2016. [Google Scholar]
- Ierides, M.; Reiland, J. Wind Turbine Blade Circularity. Technologies and Practices Around the Value Chain, Bax & Company. Available online: https://baxcompany.com/wp-content/uploads/2019/06/wind-turbine-circularity.pdf (accessed on 25 February 2021).
- Classification and handling of FRP waste within the current EC legislation. Technical Bulletin, Up Resin Group Version: 31/03/06. Available online: www.plasticeurope.org (accessed on 25 February 2021).
- Karavida, S.; Nõmmik, R. Waste Management of End-of-Service Wind Turbines, Aalborg University, 2015. Available online: https://projekter.aau.dk/projekter/files/213319772 (accessed on 25 February 2021).
- Ecoenergy Ventures, N.D. What is the ‘Waste Management Hierarchy’? Available online: http://www.ecoenergyventures.com/about/why-waste-to-energy/ (accessed on 21 February 2021).
- Potestio, S. How Wind is Going Circular. Blade Recycling. Available online: https://etipwind.eu (accessed on 21 February 2021).
- Accelerating Wind Turbine Blade Circularity. Available online: https://windeurope.org (accessed on 1 May 2020).
- Sneve, J. Sioux Falls Landfill Tightens Rules after Iowa Dumps Dozens of Wind Turbine Blades. Available online: https://www.argusleader.com/ (accessed on 12 December 2019).
- Larsen, K. Recycling wind blades. Reinforced Plastics, National Wind Watch. ScienceDirect 2009, 53, 20–23. [Google Scholar]
- Sakellariou, N. Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Syst. 2018, 9, 981–1023. [Google Scholar] [CrossRef]
- Von Weizsäcker, E.; Lovins, A.B.; Lovins, L.H. Factor Four: Doubling Wealth, Halving Resource Use; Earthscan: London, UK, 1998. [Google Scholar]
- Schumacher, C.; Weber, F. How to Extend the Lifetime of Wind Turbines. Available online: https://www.renewableenergyworld.com/om/how-to-extend-the-lifetime-of-wind-turbines/#gref (accessed on 21 February 2021).
- Razdan, P.; Garrett, P. Life Cycle Assessment of Electricity Production from an Onshore V112-3.45 MW Wind Plant; Version 1.1. Vestas Wind Systems A/S; Vestas: Aarhus, Denmark, 2017. [Google Scholar]
- Jensen, J.P. Narrowing, Slowing and Closing the Resource Loops—Circular Economy in the Wind Industry. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2018. [Google Scholar]
- Jensen, J.P. Routes for Extending the Lifetime of Wind Turbines, Plate Conference. Available online: https://www.plateconference.org/routes-extending-lifetime-wind-turbines/ (accessed on 21 February 2021).
- Mishnaevsky, L., Jr.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Mishnaevsky, L., Jr.; Thomsen, K. Costs of repair of wind turbine blades: Influence of technology aspects. Wind Energy 2020, 23, 2247–2255. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy 2019, 140, 828–839. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Fæster, S.; Mikkelsen, L.P.; Kusano, Y.; Bech, J.I. Micromechanisms of leading edge erosion of wind turbine blades: X-ray tomography analysis and computational studies. Wind Energy 2019, 23, 547–562. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Lading, L.; Sendrup, P.; McGugan, M.; Debel, C.P.; Kristensen, O.J.D.; Larsen, G.C.; Hansen, A.M.; Rheinländer, J.; Rusborg, J.; et al. Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades—A Preproject; Risoe-R.; No. 1336EN.; Forskningscenter Risoe: Roskilde, Denmark, 2002; p. 36. [Google Scholar]
- Carroll, J.; McDonald, A.; McMillan, D. Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy 2016, 19, 1107–1119. [Google Scholar]
- Mishnaevsky, L., Jr. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: Overview of mechanisms and technical solutions. Wind Energy 2019, 22, 1–18. [Google Scholar] [CrossRef]
- Innovation Foundation of Denmark (IFD) Project DURALEDGE/Durable Leading Edges for High Tip Speed Wind Turbine blades. Available online: https://www.duraledge.dk/ (accessed on 21 February 2021).
- Mishnaevsky, L., Jr.; Dai, G. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure-properties relationships. Composite Struct. 2014, 117, 156–168. [Google Scholar] [CrossRef]
- Dai, G.M.; Mishnaevsky, L., Jr. Fatigue of hybrid carbon/glass composites: 3D Computational modelling. Compos. Sci. Technol. 2014, 94, 71–79. [Google Scholar] [CrossRef]
- Thomason, J.L.; Adzima, L.J. Sizing up the interphase: An insider’s guide to the science of sizing. Compos. Part A Appl. Sci. Manuf. 2001, 32, 313–321. [Google Scholar] [CrossRef]
- Thomason, J.L. Glass Fibre Sizings—A Review of the Scientific Literature; University of Strathclyde: Glasgow, UK, 2012. [Google Scholar]
- Bech, J.I.; Hasager, C.B.; Bak, C. Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events. Wind. Energy Sci. 2018, 3, 729–748. [Google Scholar] [CrossRef] [Green Version]
- Mishnaevsky, L.; Hasager, C.B.; Bak, C.; Tilg, A.-M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renew. Energy 2021, 169, 953–969. [Google Scholar] [CrossRef]
- Chiesura, G.; Stecher, H.; Jensen, J.P. Blade materials selection influence on sustainability: A case study through LCA. IOP Conf. Series Mater. Sci. Eng. 2020, 942. [Google Scholar] [CrossRef]
- Cohades, A.; Branfoot, C.; Rae, S.; Bond, I.; Michaud, V. Progress in Self-Healing Fiber-Reinforced Polymer Composites. Adv. Mater. Interfaces 2018, 5. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Sorrentino, A.; Binder, W.H.; Kadlec, M. Development of self-healing multifunctional materials. Compos. Part B Eng. 2017, 128, 30–38. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Toohey, K.S.; Sottos, N.R.; Lewis, J.A.; Moore, J.S.; White, S.R. Self-healing materials with microvascular networks. Nat. Mater. 2007, 6, 581–585. [Google Scholar] [CrossRef]
- Matt, A.K.K.; Beyhaghi, S.; Amano, R.S.; Guo, J. Self-Healing of Wind Turbine Blades using Micro-Scale Vascular Vessels. J. Energy Resour. Technol. 2017, 139. [Google Scholar] [CrossRef]
- Kotrotsos, A.; Tsokanas, P.; Tsantzalis, S.; Kostopoulos, V. Healing of carbon fiber reinforced plastics by Diels–Alder based polymers: Effects of healing agent concentration and curing cycle. Appl. Polym. 2019, 136. [Google Scholar] [CrossRef]
- Goutianos, S.; Van Der Schueren, L.; Beauson, J. Failure mechanisms in unidirectional self-reinforced biobased composites based on high stiffness PLA fibres. Compos. Part A Appl. Sci. Manuf. 2019, 117, 169–179. [Google Scholar] [CrossRef]
- Operation and Maintenance Costs of Wind Generated Power. Available online: https://www.wind-energy-the-facts.org/operation-and-maintenance-costs-of-windgenerated-power.html (accessed on 21 February 2021).
- Nielsen, J.S.; Tcherniak, D.; Ulriksen, M.D. A case study on risk-based maintenance of wind turbine blades with structural health monitoring. Struct. Infrastruct. Eng. 2021, 17, 302–318. [Google Scholar] [CrossRef]
- Fischer, K.; Coronado, D. Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendations; VGB PowerTech: Essen, Germany, 2015; pp. 51–56. [Google Scholar]
- Yang, W.; Peng, Z.; Wei, K.; Tian, W. Structural health monitoring of composite wind turbine blades: Challenges, issues and potential solutions. IET Renew. Power Gener. 2016, 11, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Sun, D. Testing inspecting and monitoring technologies for wind turbine blades: A survey. Renew. Sustain. Energy Rev. 2013, 22, 515–526. [Google Scholar] [CrossRef]
- Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A.E.; Worden, K. Aspects of structural health and condition monitoring of offshore wind turbines. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 20140075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGugan, M.; Mishnaevsky, L., Jr. Damage mechanism based approach to the structural health monitoring of wind turbine blades. Coatings 2020, 10, 1223. [Google Scholar] [CrossRef]
- McGugan, M.; McKirdy, S. Structural health monitoring tools for late and end of life management of offshore wind turbines. In Proceedings of the 8th European Workshop on Structural Health Monitoring, Bilbao, Spain, 5–8 July 2016; pp. 2420–2429. [Google Scholar]
- Baker, A. Development of a Hard-Patch Approach for Scarf Repair of Composite Structure; Technical report No. ADA458447; Air Vehicles Division: Canberra, Australia, 2006; p. 1e29. [Google Scholar]
- Suhara, M.; Shimizu, T.; Hasegawa, K.; Shigetomi, T.; Kamibayashi, M.; Sato, Y. Development of Quick Repair Method for Aircraft Composite Structures; Technical Review Volume 53 No. 4; Mitsubishi Heavy Industries: Tokyo, Japan, 2016. [Google Scholar]
- Mischnaewski, L., III; Mishnaevsky, L., Jr. Structural repair of wind turbine blades: Computational model for the evaluation of the effects of adhesive and patch properties on the repair quality. Wind Energy 2020. [Google Scholar] [CrossRef]
- Cripps, D. The future of blade repair. Reinf. Plast. 2011, 55, 28–32. [Google Scholar] [CrossRef]
- Ding, H. Surface Enhancement and Repairing of Critical Wind Turbine Components through Laser-Based Manufacturing Processes; North American Wind Energy Academy (NAWEA): Boulder, CO, USA, 2013. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Closing the Loop on the Plastics Dilemma: Proceedings of a Workshop–in Brief; The National Academies Press: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Overcash, M.; Twomey, J.; Asmatulu, E.; Vozzola, E.; Griffing, E. Thermoset composite recycling – Driving forces, development, and evolution of new opportunities. J. Compos. Mater. 2017, 52, 1033–1043. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, N.; Pharaoh, M. An introduction to Composites Recycling, Management, Recycling and Reuse of Waste Composites; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 1–19. [Google Scholar]
- Cherrington, R.; Goodship, V.; Meredith, J.; Wood, B.; Coles, S.; Vuillaume, A.; Feito-Borac, A.; Spee, F.; Kirwan, K. Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 2012, 47, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.; Skelton, K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. [Google Scholar] [CrossRef]
- Dogirato, A. Recycling of thermosetting composites for wind blade application. Adv. Ind. Eng. Polym. Res. 2021, (in press). [Google Scholar] [CrossRef]
- Fraisse, A.; Beauson, J.; Brøndsted, P.; Madsen, B. Thermal recycling and re-manufacturing of glass fibre thermosetting composites. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012020. [Google Scholar] [CrossRef] [Green Version]
- Beauson, J.; Brøndsted, P. Wind Turbine Blades: An End of Life Perspective. In MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 421–432. [Google Scholar]
- Gopalraj, S.K.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Psomopoulos, C.S.; Kalkanis, K.; Kaminaris, S.; Ioannidis, G.C.; Pachos, P. A review of the potential for the recovery ofwind turbine blade waste materials. Recycling 2019, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Pickering, S. Recycling technologies for thermoset composite materials—Current status. Compos. Part A 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Dvorak, P. Repower or Refit? That is the Question; Wind Power Engineering: Cleveland, OH, USA, 2014. [Google Scholar]
- Ortegon, K.; Nies, L.F.; Sutherland, J.W. Preparing for end of service life of wind turbines. J. Clean. Prod. 2013, 39, 191–199. [Google Scholar] [CrossRef]
- Joeman, I. Alternatives on Afterlife Use of Amortized Wind Turbine Blades in the Netherlands. Master’s Thesis, University of Twente, Twente, The Netherlands, 2018/2019. Available online: www.essay.utwente.nl/79590/98/Joeman_MA_MEEM.pdf (accessed on 25 February 2021).
- GE Adds Value to the US Wind Turbine Industry with its Repower Offering. 23 May 2017. Available online: https://www.ge.com/news/press-releases/ge-adds-value-us-wind-turbine-industry-its-repower-offering (accessed on 21 February 2021).
- Un-WIND Urban Furniture, New Citizen Design, PROJECTSJUNE 24. 2019. Available online: https://newcitizendesign.nl/2019/06/24/un-wind-urban-furniture/ (accessed on 21 February 2021).
- André, A.; Kullberg, J.; Nygren, D.; Mattsson, C.; Nedev, G.; Haghani, R. Re-use of wind turbine blade for construction and infrastructure applications. IOP Conf. Series: Mater. Sci. Eng. 2020, 942, 012015. [Google Scholar] [CrossRef]
- Speksnijder, S. Reuse of Wind Turbine Blades in a Slow Traffic Bridge. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, March 2018. [Google Scholar]
- Suhail, R.; Chen, J.-F.; Gentry, T.R.; Tasistro-Hart, B.; Xue, Y.; Bank, L.C. Analysis and Design of a Pedestrian Bridge with Decommissioned FRP Windblades and Concrete. In Proceedings of the International Conference FRPRCS14, Belfast, UK, 4–7 June 2019. [Google Scholar]
- Bank, L.C.; Arias, F.R.; Yazdanbakhsh, A.; Gentry, T.R.; Al-Haddad, T.; Chen, J.-F.; Morrow, R. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing. Recycling 2018, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Mativenga, P.T.; Shuaib, N.A.; Howarth, J.; Pestalozzi, F.; Woidasky, J. High voltage fragmentation and mechanical recycling of glass fibre thermoset composite. CIRP Ann. 2016, 65, 45–48. [Google Scholar] [CrossRef]
- Miceli, F. Circular Economy: Use of Wind Turbines Blades as Combustible and Mix Material for Cement Production. Available online: http://www.windfarmbop.com/ (accessed on 9 June 2019).
- Schmidl, E.; Hinrichs, S. Geocycle provides sustainable recycling of rotor blades in cement plant. DEWI Magazine 2010, 36, 6–14. [Google Scholar]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Bech, J.I. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 390–399. [Google Scholar] [CrossRef]
- H2020 FiberEUse Project. Large Scale Demonstration of New Circular Economy Value-Chains Based on the Reuse of End-of-Life Fiber Reinforced Composites. Available online: https://cordis.europa.eu/project/id/730323 (accessed on 25 February 2021).
- Pickering, S.; Kelly, R.; Kennerley, J. A fluidized bed process for the recovery of glass fibres from scrap thermoset composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.; Leeke, G. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef] [Green Version]
- Sokoli, H.U.; Simonsen, M.E.; Nielsen, R.P.; Henriksen, J.; Madsen, M.L.; Pedersen, N.H.; Søgaard, E.G. Characterization of the Liquid Products from Hydrolyzed Epoxy and Polyester Resin Composites Using Solid-Phase Microextraction and Recovery of the Monomer Phthalic Acid. Ind. Eng. Chem. Res. 2016, 55, 9118–9128. [Google Scholar] [CrossRef]
- Åkesson, D.; Foltynowicz, Z.; Christéen, J.; Skrifvars, M. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines. J. Reinf. Plast. Compos. 2012, 31, 1136–1142. [Google Scholar] [CrossRef]
- De Moraes, V.T.; Jermolovicius, L.A.; Tenório, J.A.S.; Lebrão, S.M.G.; Lebrão, G.W. Microwave-Assisted Recycling Process to Recover Fiber from Fiberglass Polyester Composites. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- Sokoli, H.U.; Simonsen, M.E.; Nielsen, R.P.; Arturi, K.R.; Søgaard, E.G. Conversion of the matrix in glass fiber reinforced composites into a high heating value oil and other valuable feedstocks. Fuel Process. Technol. 2016, 149, 29–39. [Google Scholar] [CrossRef]
- Allred, R.E.; Gosau, J.M.; Shoemaker, J.M. Recycling process for carbon/epoxy composites. In Proceedings of the 46th International SAMPE Symposium and Exhibition, Long Beach, CA, USA, 6–10 May 2001. [Google Scholar]
- Nakagawa, M.; Shibata, K.; Kuriya, H. Characterization of CFRP using recovered carbon fibers from waste CFRP. In Proceedings of the Second International Symposium on Fiber Recycling, Atlanta, GA, USA, 11–12 May 2009. [Google Scholar]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Wong, K.H. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Ibarra, R.M.; Sasaki, M.; Goto, M.; Quitain, A.T.; Montes, S.M.G.; Aguilar-Garib, J.A. Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J. Mater. Cycles Waste Manag. 2014, 17, 369–379. [Google Scholar] [CrossRef]
- Mattsson, C.; André, A.; Juntikka, M.; Tränkle, T.; Sott, R. Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. IOP Conference Series: Materials Science and Engineering. In Proceedings of the 41st Risø International Symposium on Materials Science: Materials and Design for Next Generation Wind Turbine Blades, Roskilde, Denmark, 7–10 September 2020. [Google Scholar]
- Pimenta, S. Toughness and Strength of Recycled Composites and Their Virgin Precursors. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Meyer, L.; Schulte, K. CFRP-recycling following a pyrolysis route: Process optimization and potential. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wang, Z.; Feng, L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water. Mater. Des. 2010, 31, 999–1002. [Google Scholar] [CrossRef]
- Recycling Thermoset Composites of the SST. Final Summary Report of the EURECOMP Project. Available online: www.transport-research.info/project/recycling-thermoset-composites-sst (accessed on 10 May 2016).
- Feng, N.; Wang, X.; Wu, D. Surface modification of recycled carbon fiber and its reinforcement effect on nylon 6 composites: Mechanical properties, morphology and crystallization behaviors. Curr. Appl. Phys. 2013, 13, 2038–2050. [Google Scholar] [CrossRef]
- Takahashi, J.; Matsutsuka, N.; Okazumi, T.; Uzawa, K.; Ohsawa, I.; Yamaguchi, K.; Kitano, A. Mechanical properties of recycled CFRP by injection molding method. In Proceedings of the 16th international conference on composite materials, Kyoto, Japan, 8–13 July 2007. [Google Scholar]
- Englund, K. Available online: https://news.wsu.edu/2015/08/19/wsu-researchers-find-new-uses-for-old-windmill-blades/#more-140693 (accessed on 10 May 2016).
- EU LIFE-BRIO Project. Demonstration of Wind Turbine Rotor Blade Recycling into the Coal Clough Wind Farm Decommissioning Opportunity. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=5139&docType=pdf (accessed on 26 February 2021).
- Gardiner, G. Thermoplastic Wind Blades: To Be or Not? 3/31/2012, Composites World. Available online: https://www.compositesworld.com/articles/thermoplastic-wind-blades-to-be-or-not (accessed on 21 February 2021).
- Mathijsen, D. Trailblazing thermoplastics for wind turbine blades. Reinforced Plastics 2013, 57, 36–39. [Google Scholar] [CrossRef]
- Lystrup, A. Vacuum consolidated of thermoplastic composites for wind turbine rotor blades. In Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite Materials for Wind Power Turbines, Risø National Laboratory, Roskilde, Denmark; 2006; pp. 231–238. [Google Scholar]
- Tusavul, S.; Fragoudakis, R.; Saigal, A.; Zimmerman, A. Thermoplastic materials for wind turbine blade design. In Proceedings of the ACEM 2014 Congress, Busan, Korea, 24–28 August 2014; pp. 1–7. [Google Scholar]
- Van Rijswijk, K. Thermoplastic Composite Wind Turbine Blades: Vacuum Infusion Technology for Anionic Polyamide-6 Composites. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, April 2007. [Google Scholar]
- Teuwen, J.J.; Van Geenen, A.; Bersee, H.E. Vacuum-infused anionic polyamide-6 composites: The effect of postprocessing. J. Thermoplast. Compos. Mater. 2011, 25, 965–986. [Google Scholar] [CrossRef]
- Joncas, S. Thermoplastic Composite Wind Turbine Blades. An Integrated Design Approach. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, July 2010. [Google Scholar]
- Garate, J.; Solovitz, S.A.; Kim, D. Fabrication and performance of segmented thermoplastic composite wind turbine blades. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 271–277. [Google Scholar] [CrossRef]
- Durai Prabhakaran, R.T. Future perspectives and challenges of thermoplastic wind blades. Abstracts. Indo-Danish Workshop on Future Composites Technologies for Wind Turbine Blades. DTU Risø. 2012. Available online: https://orbit.dtu.dk/en/publications/future-perspectives-and-challenges-of-thermoplastic-wind-blades (accessed on 21 February 2021).
- Raghavalu Thirumalai, D.P. A critical review of future materials for wind turbine blades. Int. J. Mater. Eng. Innov. 2014, 5, 81–99. [Google Scholar] [CrossRef]
- Durai Prabhakaran, R.T. Are Reactive Thermoplastic Polymers Suitable for Future Wind Turbine Composite Materials Blades? Mech. Adv. Mater. Struct. 2014, 21, 213–221. [Google Scholar] [CrossRef]
- Murray, R.E.; Jenne, S.; Snowberg, D.; Berry, D.; Cousins, D. Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade. Renew. Energy 2019, 131, 111–119. [Google Scholar] [CrossRef]
- Murray, R.E.; Roadman, J.; Beach, R. Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization. Renew. Energy 2019, 140, 501–512. [Google Scholar] [CrossRef]
- Murray, R.E.; Penumadu, D.; Cousins, D.; Beach, R.; Snowberg, D.; Berry, D.; Suzuki, Y.; Stebner, A. Manufacturing and Flexural Characterization of Infusion-Reacted Thermoplastic Wind Turbine Blade Subcomponents. Appl. Compos. Mater. 2019, 26, 945–961. [Google Scholar] [CrossRef]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Production 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J.I. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polym. Rev. 2019, 60, 359–388. [Google Scholar] [CrossRef]
- García, J.M.; Jones, G.O.; Virwani, K.; McCloskey, B.D.; Boday, D.J.; ter Huurne, G.M.; Horn, H.W.; Coady, D.J.; Bintaleb, A.M.; Alabdulrahman, A.M. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 2014, 344, 732–735. [Google Scholar] [CrossRef]
- Long, T.E. Toward Recyclable Thermosets. Science 2014, 344, 706–707. [Google Scholar] [CrossRef] [PubMed]
- Pastine, S.; Swentek, I.; Nasrullah, M.; Kosiński, S.; Banatao, R.; Ugresic, V.; Henning, F. Recyclable High Pressure Resin Transfer (hp-rtm) Molding Epoxy Systems and their Composite Properties. Available online: https://www.semanticscholar.org/paper/RECYCLABLE-HIGH-PRESSURE-RESIN-TRANSFER-(HP-RTM)-Pastine-Swentek/4893806602d318e74d41cf794546b993c5ffd358 (accessed on 21 February 2021).
- Gardiner, G. Connora Technologies Makes Epoxy Truly Recyclable, CompositesWorld, 11/13/2014. Available online: https://www.compositesworld.com/articles/-connora-technologies-makes-epoxy-truly-recyclable (accessed on 21 February 2021).
- Henriksen, M.L.; Ravnsbaek, J.B.; Bjerring, M.; Vosegaard, T.; Daasbjerg, K.; Hinge, M.; Ravnsbæk, J.B. Epoxy Matrices Modified by Green Additives for Recyclable Materials. ChemSusChem 2017, 10, 2936–2944. [Google Scholar] [CrossRef]
- De Luzuriaga, A.R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabanero, G.; Rodriguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241–247. [Google Scholar] [CrossRef]
- Wu, M.-S.; Jin, B.C.; Li, X.; Nutt, S. A recyclable epoxy for composite wind turbine blades. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Sun, Y.; Yan, S.; Zhao, J.; Liu, S.; Zhang, M.; Zheng, X.; Jia, L. Multiply Fully Recyclable Carbon Fibre Reinforced Heat-Resistant Covalent Thermosetting Advanced Composites. Nat. Commun. 2017, 8, 14657. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.-S.; Korner, H.; Breiner, T.; Ober, C.K.; Poliks, M.D. Reworkable Epoxies: Thermosets with Thermally Cleavable Groups for Controlled Network Breakdown. Chem. Mater. 1998, 10, 1475–1482. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- World First PU Wind Turbine Blades: Bigger, Better Blades with Polyurethane Infusion Resin. Available online: https://solutions.covestro.com/en/highlights/articles/stories/2019/pu-for-wind-tower-rotor-blades (accessed on 21 February 2021).
- Ogden, W.A.; Guan, Z. Recyclable, Strong, and Highly Malleable Thermosets Based on Boroxine Networks. J. Am. Chem. Soc. 2018, 140, 6217–6220. [Google Scholar] [CrossRef] [PubMed]
- Moller, J.P. An Investigation of Sustainable and Recyclable Composites for Structural Applications. Ph.D. Thesis, University of Massachusetts Lowell, Lowell, MA, USA, 2017. [Google Scholar]
- Chen, J.; Huang, H.; Fan, J.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Vitrimer Chemistry Assisted Fabrication of Aligned, Healable, and Recyclable Graphene/Epoxy Composites. Front. Chem. 2019, 7, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Schmidt, D.F.; Reynaud, E. Catalyst Selection, Creep, and Stress Relaxation in High-Performance Epoxy Vitrimers. Ind. Eng. Chem. Res. 2017, 56, 2667–2672. [Google Scholar] [CrossRef]
- Kuncho, C.N.; Liu, W.; Möller, J.; Kammleiter, J.; Stehle, J.; Kokil, A.; Reynaud, E.; Schmidt, D.F. Enhancing the Sustainability of High-Performance Fiber Composites. ACS Symp. Ser. 2018, 281–295. [Google Scholar] [CrossRef]
- Schmidt, D.; Reynaud, E. Collaborative—Achieving a Sustainable Energy Pathway for Wind Turbine Blade Manufacturing, Grant 1230884; NSF SEP Report; Plastics Engineering Department, University of Massachusetts, Lowell; National Science Foundation: Alexandria, VA, USA, 2016.
- Howard, B.C. Iran’s Centuries-Old Windmills May Soon Stop Turning, National Geographic, 13.1. 2017. Available online: https://www.nationalgeographic.com/science/article/nashtifan-iran-windmills (accessed on 26 February 2021).
- Spera, D.A.; Esgar, J.B.; Gougeon, M.; Zuteck, M. Structural Properties of Laminated Douglas Fir/Epoxy Composite Materials; DOE/NASA/20320-76 (NASA 1236); National Aeronautics and Space Administration: Cleveland, OH, USA, 1990.
- TPI Composites, Inc. Innovative Design Approaches for Large Wind Turbine Blades; Sandia Report (SAND2003-0723); John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Poore, R.Z. Advanced Blade Manufacturing Project Final Report; Sandia Report (SAND99-2017); Sandia National Labs.: Livermore, CA, USA, 1999. [Google Scholar]
- Mishnaevsky, L.; Freere, P.; Sinha, R.; Acharya, P.; Shrestha, R.; Manandhar, P. Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences. Renew. Energy 2011, 36, 2128–2138. [Google Scholar] [CrossRef]
- Sinha, R.; Acharya, P.; Freere, P.; Sharma, R.; Ghimire, P.; Mishnaevsky, L. Selection of Nepalese Timber for Small Wind Turbine Blade Construction. Wind. Eng. 2010, 34, 263–276. [Google Scholar] [CrossRef]
- Astle, C.; Burge, I.; Chen, M.; Herrler, T.; Kwan, L.; Zibin, N.; Wood, D. Timber for small wind turbine blades. Energy Sustain. Dev. 2013, 17, 671–676. [Google Scholar] [CrossRef]
- Pourrajabian, A.; Dehghan, M.; Javed, A.; Wood, D. Choosing an appropriate timber for a small wind turbine blade: A comparative study. Renew. Sustain. Energy Rev. 2019, 100, 1–8. [Google Scholar] [CrossRef]
- Borrmann, R. Structural Design of a Wood-CFRP Wind Turbine Blade Model; Flensburg University of Applied Sciences: Flensburg, Germany, 2016. [Google Scholar]
- IEA Wind Energy Annual Report 7993, NUTEC Swedish National Board for Industrial and Technical Development B 1.994.′2. 1993.
- Gougeon, M. The Gougeon Brothers on Boat Building: Wood and West System Materials; Gougeon Brothers Inc.: Bay City, MI, USA, 2005. [Google Scholar]
- Lark, R.F.; Gougeon, M.; Thomas, G. Fabrication of Low-Cost Mod-0A Wood Composite Wind Turbine Blades; Final Report, DOE/NASA/20320-45 (NASA-TM-83323); Lewis Research Center: Cleveland, OH, USA, 1983. [Google Scholar]
- Koh, R. Bio-based Wind Turbine Blades: Renewable Energy Meets Sustainable Materials for Clean, Green Power. Ph.D. Thesis, University of Massachusetts, Amherst, MA, USA, 2017. [Google Scholar]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Fink, H.-P.; Lehmann, A.; Ganster, J. Bio-based carbon fibers—Efforts and prospects. Chem. Fibers Int. 2013, 63, 29–30. [Google Scholar]
- Jiang, Z.H. Bamboo and Rattan in the World; Liaoning Science and Technology Publishing House: Shenyang, China, 2002. [Google Scholar]
- Shu, B.; Xia, Z.; Hong, L.; Zhang, S.; Li, C.; Fu, N.; Lu, X. Review on the Application of Bamboo-Based Materials in Construction Engineering. J. Renew. Mater. 2020, 8, 1215–1242. [Google Scholar] [CrossRef]
- Okubo, K.; Fujii, T.; Yamamoto, Y. Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377–383. [Google Scholar] [CrossRef]
- Holmes, J.W.; Brøndsted, P.; Sørensen, B.F.; Jiang, Z.; Sun, Z.; Chen, X. Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades. Wind. Eng. 2009, 33, 197–210. [Google Scholar] [CrossRef]
- Platts, M.J. Strength, Fatigue Strength and Stiffness of High-Tech Bamboo/Epoxy Composites. Agric. Sci. 2014, 5, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Platts, M.J. Wind energy turns to bamboo. Energy Mater. 2006, 1, 84–87. [Google Scholar] [CrossRef]
- Huang, X.-D.; Hse, C.-Y.; Shupe, T.F. Evaluation of the Performance of the Composite Bamboo/Epoxy Laminated Material for Wind Turbine Blades Technology. BioResources 2014, 10, 660–671. [Google Scholar] [CrossRef]
- Xu, J.; Qin, Y.; Zhang, Y. Bamboo as a Potential Material Used for Windmill Turbine Blades, A Life Cycle Analysis with Sustainable Perspective. Master’s Thesis, Roskilde University, Roskilde, Denmark, December 2009. [Google Scholar]
- Bamboo Composites for Wind Power Market-Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2016–2024. Available online: https://www.transparencymarketresearch.com/bamboo-composites-wind-power-market.html (accessed on 21 February 2021).
- Madsen, B.; Gamstedt, K. Wood versus plant fibers: Similarities and differences in composite applications. Adv. Mater. Sci. Eng. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Bledzki, A.; Sperber, V.E.; Faruk, O. Natural Wood and Fibre Reinforcement in Polymers; Rapra Technology Ltd.: Dublin, OH, USA, 2002. [Google Scholar]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B: Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos. Part B: Eng. 2013, 52, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Kalagi, G.R.; Patil, R.; Nayak, N. Natural fiber reinforced polymer composite materials for wind turbine blade applications. Int. J. Sci. Dev. Res. 2016, 1, 29–37. [Google Scholar]
- Boria, S.; Santulli, C.; Raponi, E.; Sarasini, F.; Tirillò, J. Evaluation of a new green composite solution for wind turbine blades. Multiscale Multidiscip. Model. Exp. Des. 2019, 2, 141–150. [Google Scholar] [CrossRef]
- Birkved, M.; Corona, A.; Markussen, C.M.; Madsen, B. Selection of environmental sustainable fiber materials for wind turbine blades—A contra intuitive process. In Proceedings of the 34th Risø International Symposium on Materials Science: Processing of fibre composites, Riso, Denmark, 5–8 September 2016. [Google Scholar]
- Corona, A.; Markussen, C.M.; Birkved, M.; Madsen, B. Comparative Environmental Sustainability Assessment of Bio-Based Fibre Reinforcement Materials for Wind Turbine Blades. Wind Eng. 2015, 39, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Elium® Resins for Composites. Available online: https://www.arkema.com/global/en/products/product-finder/product-range/incubator/elium_resins/ (accessed on 21 February 2021).
- Black, S. Green Resins: Closer to Maturity CompositesWorld, 11/27/2015. Available online: https://www.compositesworld.com/articles/green-resins-closer-to-maturity (accessed on 21 February 2021).
- Pond and FiberStrength PressRelease. Available online: https://www.linkedin.com/posts/pond-biomaterials_press-release-new-partnership-with-fiberstrength-activity-6660868620148580352-oDs1 (accessed on 21 February 2021).
- Turcotte, D. Sustainability of the Wind Turbine Blade Manufacturing Process: A Bio-Based Alternative, SEP Collaborative: Achieving a Sustainable Energy Pathway for Wind Turbine Blade Manufacturing; University of Massachusetts: Lowell, MA, USA, 2015. [Google Scholar]
- Zhou, H.W.; Yi, H.Y.; Liu, Y.Q.; Hu, X.; Warrier, A.; Dai, G.M.; Mishnaevsky, L., Jr. Carbon fiber/carbon nanotube based hierarchical composites: Effect of CNT distribution on shearing strength. Compos. B: Eng. 2016, 88, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Mishnaevsky, L., Jr. Nanostructured interfaces for enhancing mechanical properties of materials: Computational micromechanical studies. Compos. Part B: Eng. 2015, 68, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Blaker, J.J.; Lee, K.-Y.; Bismarck, A. Hierarchical composites made entirely from renewable resources. J. Biobased Mater. Bioenergy 2011, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Okubo, K.; Fujii, T.; Yamashita, N. Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Micro-Fibrillated Cellulose. JSME Int. J. Ser. Solid Mech. Mater. Eng. 2005, 48, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Buyle, G.; Van der Schueren, L.; Beauson, J.; Goutianos, S.; Schillani, G.; Madsen, B. Self-reinforced biobased composites based on high stiffness PLA yarns. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 406. [Google Scholar] [CrossRef] [Green Version]
- Report “Driftsomkostninger for Ældre Vindmøller” for Energistyrelsen, EMD International A/S (Principal consultant Per Nielsen). 2019. Available online: https://ens.dk/sites/ens.dk/files/Analyser/bilag_1_-_rapport_fra_emd_international_as.pdf (accessed on 21 February 2021).
- A Clean Energy Solution—From Cradle to Grave, Environmental Product Declaration SG 8.0-167 DD 2019; Siemens Gamesa: Zamudio, Spain, 2019.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishnaevsky, L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials 2021, 14, 1124. https://doi.org/10.3390/ma14051124
Mishnaevsky L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials. 2021; 14(5):1124. https://doi.org/10.3390/ma14051124
Chicago/Turabian StyleMishnaevsky, Leon. 2021. "Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions" Materials 14, no. 5: 1124. https://doi.org/10.3390/ma14051124
APA StyleMishnaevsky, L. (2021). Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials, 14(5), 1124. https://doi.org/10.3390/ma14051124