PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PICN Composite
2.3. Three-Point Bending Test
2.4. Vickers Hardness
2.5. Inorganic Content
2.6. Shear Bond Strength
2.7. Surface Free Energy
2.8. Microstructural Analysis
2.9. CAD/CAM Milling of PICN Composite Block
2.10. Statistical Analysis
3. Results
3.1. Mechanical Properties
3.2. Shear Bond Strength
3.3. Surface Free Energy
3.4. Microstructure
3.5. CAD/CAM Milling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Optimization of Precursor Solution
Precursor Solution | Monomer | Solvent | Nanoparticles | Initiator | ||
---|---|---|---|---|---|---|
HEMA | TEGDMA | POE | PrOH | Silica | BAPO | |
PS-1 | 8.0 | 0.8 | 1.8 | 7.0 | 22.0 | 0.4 |
PS-2 | 16.0 | 1.6 | 0 | 0 | 22.0 | 0.4 |
PS-3 | 8.8 | 0 | 1.8 | 7.0 | 22.0 | 0.4 |
PS-4 | 0 | 8.8 | 1.8 | 7.0 | 22.0 | 0.4 |
PS-5 | 8.0 | 0.8 | 8.8 | 0 | 22.0 | 0.4 |
PS-6 | 8.0 | 0.8 | 0 | 8.8 | 22.0 | 0.4 |
References
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM ceramic restorative materials for natural teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Lee, C.; Karaer, O.; Ban, S.; Mine, A.; Imazato, S. Predicting the debonding of CAD/CAM composite resin crowns with AI. J. Dent. Res. 2019, 98, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Alshahrani, F.A.; Kale, E.; Johnston, W.M. Effect of feldspathic porcelain layering on the marginal fit of zirconia and titanium complete-arch fixed implant-supported frameworks. J. Prosthet. Dent. 2018, 120, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Jang, S.H.; Kim, Y.K.; Son, J.S.; Min, B.K.; Kim, K.H.; Kwon, T.Y. Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials 2016, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, C.; Rask, H.; Awada, A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J. Prosthet. Dent. 2018, 119, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C.; Bansal, R.; Burgess, J.O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent. Mater. 2016, 32, e275–e283. [Google Scholar] [CrossRef] [PubMed]
- Ban, S. Chemical durability of high translucent dental zirconia. Dent. Mater. J. 2020, 39, 12–23. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.B.; Ramos, V.J.; Dickinson, D.P. Comparison of fit of dentures fabricated by traditional techniques versus CAD/CAM technology. J. Prosthodont. 2019, 28, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Lauvahutanon, S.; Takahashi, H.; Shiozawa, M.; Iwasaki, N.; Asakawa, Y.; Oki, M.; Finger, W.J.; Arksornnukit, M. Mechanical properties of composite resin blocks for CAD/CAM. Dent. Mater. J. 2014, 33, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, J.C.M.; Correia, M.S.T.; Oliveira, M.N.; Silva, F.S.; Henriques, B.; Novaes de Oliveira, A.P.; Gomes, J.R. PEEK-matrix composites containing different content of natural silica fibers or particulate lithium-zirconium silicate glass fillers: Coefficient of friction and wear volume measurements. Biotribology 2020, 24, 100147. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Antonowicz, M.; Paszenda, Z.K. Cenospheres and their application advantages in biomedical engineering—A systematic review. Rev. Adv. Mater. Sci. 2020, 59, 115–130. [Google Scholar] [CrossRef]
- Faus-Matoses, V.; Ruiz-Bell, E.; Faus-Matoses, I.; Ozcan, M.; Salvatore, S.; Faus-Llacer, V.J. An 8-year prospective clinical investigation on the survival rate of feldspathic veneers: Influence of occlusal splint in patients with bruxism. J. Dent. 2020, 99, 103352. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Marcin, B.; Sambok, A.; Antonowicz, M.; Paszenda, Z.K.; Ziębowicz, A.; Krawczyk, C.; Ziębowicz, B.; Lemcke, H.; Kałużyński, P. Ageing of zirconia dedicated to dental prostheses for bruxers part 1: Influence of accelerating ageing for surface topography and mechanical properties. Rev. Adv. Mater. Sci. 2019, 58, 189–194. [Google Scholar] [CrossRef]
- D’Addazio, G.; Santilli, M.; Rollo, M.L.; Cardelli, P.; Rexhepi, I.; Murmura, G.; Al-Haj Husain, N.; Sinjari, B.; Traini, T.; Ozcan, M.; et al. Fracture resistance of zirconia-reinforced lithium silicate ceramic crowns cemented with conventional or adhesive systems: An in vitro study. Materials 2020, 13, 2012. [Google Scholar] [CrossRef] [PubMed]
- Eldafrawy, M.; Nguyen, J.F.; Mainjot, A.K.; Sadoun, M.J. A functionally graded PICN material for biomimetic CAD-CAM blocks. J. Dent. Res. 2018, 97, 1324–1330. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef]
- Wilmers, J.; Bargmann, S. Nature’s design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater. 2020, 107, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Niu, X.; Rahbar, N.; Soboyejo, W. Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation. Acta Biomater. 2013, 9, 5273–5279. [Google Scholar] [CrossRef] [PubMed]
- Madfa, A.A.; Yue, X.G. Dental prostheses mimic the natural enamel behavior under functional loading: A review article. Jpn. Dent. Sci. Rev. 2016, 52, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Al-Jawoosh, S.; Ireland, A.; Su, B. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material. Dent. Mater. 2018, 34, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Petrini, M.; Ferrante, M.; Su, B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dent. Mater. 2013, 29, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Inoue, K.; Nakajima, K.; Tachikawa, T.; Yamazaki, H.; Isobe, T.; Sugawara, A.; Ogawa, M.; Tanaka, C.; Saito, M.; et al. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy. Sci. Rep. 2014, 4, 6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Bhowmick, S.; Chai, H.; Lawn, B.R. Role of substrate material in failure of crown-like layer structures. J. Biomed. Mater. Res. Part B 2007, 81, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Imbeni, V.; Kruzic, J.; Marshall, G.; Marshall, S.; Ritchie, R. The dentin–enamel junction and the fracture of human teeth. Nat. Mater. 2005, 4, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Homaei, E.; Farhangdoost, K.; Tsoi, J.K.H.; Matinlinna, J.P.; Pow, E.H.N. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. J. Mech. Behav. Biomed. Mater. 2016, 59, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, M.; Freyse, C.; Specht, O.; Behrend, D.; Maletz, R.; Janda, R.; Ottl, P. Correlation of ultrasound microscopy and Vickers hardness measurements of human dentin and enamel—A pilot study. Dent. Mater. 2018, 34, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Smith, D.T.; Jahanmir, S.; Romberg, E.; Kelly, J.R.; Thompson, V.P.; Rekow, E.D. Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 1998, 77, 472–480. [Google Scholar] [CrossRef]
- Kinney, J.H.; Balooch, M.; Marshall, G.W.; Marshall, S.J. A micromechanics model of the elastic properties of human dentine. Arch. Oral. Biol. 1999, 44, 813–822. [Google Scholar] [CrossRef]
- Fong, H.; Sarikaya, M.; White, S.; Snead, M. Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater. Sci. Eng. C 1999, 7, 119–128. [Google Scholar] [CrossRef]
- Ausiello, P.; Rengo, S.; Davidson, C.L.; Watts, D.C. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: A 3D-FEA study. Dent. Mater. 2004, 20, 862–872. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Swain, M.V. Nanoindentation derived stress-strain properties of dental materials. Dent. Mater. 2007, 23, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Corazza, P.H.; Zhang, Y. Characterization of a polymer-infiltrated ceramic-network material. Dent. Mater. 2014, 30, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, J.F.; Ruse, D.; Phan, A.C.; Sadoun, M.J. High-temperature-pressure polymerized resin-infiltrated ceramic networks. J. Dent. Res. 2014, 93, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Zhawi, H.; Kaizer, M.R.; Chughtai, A.; Moraes, R.R.; Zhang, Y. Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear. Dent. Mater. 2016, 32, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- He, L.H.; Swain, M. A novel polymer infiltrated ceramic dental material. Dent. Mater. 2011, 27, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cui, B.C.; Lin, Y.H.; Deng, X.L.; Li, M.; Nan, C.W. High strength and toughness in chromatic polymer-infiltrated zirconia ceramics. Dent. Mater. 2016, 32, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Nagamatsu, Y.; Shimizu, H. Preparation of silica-poly (methyl methacrylate) composite with a nanoscale dual-network structure and hardness comparable to human enamel. Dent. Mater. 2019, 35, 893–899. [Google Scholar] [CrossRef]
- Facenda, J.C.; Borba, M.; Corazza, P.H. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J. Esthet. Restor. Dent. 2018, 30, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From artisanal to CAD-CAM blocks: State of the art of indirect composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Conejo, J.; Ozer, F.; Mante, F.; Atria, P.J.; Blatz, M.B. Effect of surface treatment and cleaning on the bond strength to polymer-infiltrated ceramic network CAD-CAM material. J. Prosthet. Dent. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ludovichetti, F.S.; Trindade, F.Z.; Werner, A.; Kleverlaan, C.J.; Fonseca, R.G. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J. Prosthet. Dent. 2018, 120, 318. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 6872. Dentistry—Ceramic Materials, 3rd ed.; International Organization for Standardization: Geneva, Swetzerland, 2008. [Google Scholar]
- Alarcon, R.T.; Gaglieri, C.; Bannach, G. Dimethacrylate polymers with different glycerol content. J. Therm. Anal. Calorim. 2018, 132, 1579–1591. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.T.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Effects of alumina airborne-particle abrasion on the surface properties of CAD/CAM composites and bond strength to resin cement. Dent. Mater. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, D.T. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Floyd, C.J.; Dickens, S.H. Network structure of Bis-GMA-and UDMA-based resin systems. Dent. Mater. 2006, 22, 1143–1149. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef]
- Ferracane, J.L. Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent. Mater. 2005, 21, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M.; ArRejaie, A.S.; Al-Thobity, A.M. Comparative effect of different polymerization techniques on the flexural and surface properties of acrylic denture bases. J. Prosthodont. 2019, 28, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhou, Y.; Lan, J.; Yu, Y.; Cai, Q.; Yang, X. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration. Dent. Mater. J. 2020, 39, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Yano, H.T.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding. J. Mech. Behav. Biomed. Mater. 2020, 101, 103441. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Kou, H.; Rao, J.; Liu, C.; Ning, C. Fabrication of enamel-like structure on polymer-infiltrated zirconia ceramics. Dent. Mater. 2021. [Google Scholar] [CrossRef] [PubMed]
Acronym | Material Type | Manufacturer | Product Name | Purity (%) |
---|---|---|---|---|
Silica | Nanoparticles | NiPPON AEROSIL, Tokyo, Japan | OX50 | 99.8 |
HEMA | Monomer | FujiFilm Wako Chemical, Osaka, Japan | 2-hydroxyethy methacrylate | 95.0 |
TEGDMA | Monomer | FujiFilm Wako Chemical, Osaka, Japan | Triethylene glycol dimethacrylate | 90.0 |
POE | Solvent | FujiFilm Wako Chemical, Osaka, Japan | 2-phenoxyethanol | 99.0 |
PrOH | Solvent | FujiFilm Wako Chemical, Osaka, Japan | 1-propanol | 99.5 |
BAPO | Light-initiator | FujiFilm Wako Chemical, Osaka, Japan | Phenylbis (2, 4, 6-trimethyl-benzoyl) phosphine oxide | 97.0 |
ɤ-MPTS | Silane coupling agent | Shin-Etsu Chemical, Tokyo, Japan | 3-methacryl oxypropyl trimethoxysilane | 99.9 |
UDMA | Monomer | Sigma-Aldrich, St. Louis, MO, USA | Urethane dimethacrylate | 97.0 |
BPO | Heat-initiator | Alfa Aesar, Lancashire, UK | Benzoyl peroxide | 97.0 |
Acronym | Material Type | Product | Manufacturer | Monomer Composition | Filler Composition |
---|---|---|---|---|---|
DC* | Direct resin composite | Clear fill DC core Auto Mix ONE | Kuraray Noritake Dentall, Tokyo, Japan | Bis-GMA, methacrylic monomer, TEGDMA, other | Silica, Alumina, Silica-based glass |
AV | Indirect resin composite (CAD/CAM block) | KATANA AVENCIA Block | Kuraray Noritake Dentall, Tokyo, Japan | UDMA, methacrylic monomer, other | Silica, Aulmina |
Sample Name | Sintering Time | Monomer | Polymerization Schedule |
---|---|---|---|
2h-T-100 | 2 h | TEGDMA * | 100 °C 1d *** |
2h-T-60 | 2 h | TEGDMA * | 60 °C 5d → 80 °C 1d **** |
2h-U-100 | 2 h | UDMA+TEGDMA ** | 100 °C 1d *** |
1h-U-60 | 1 h | UDMA+TEGDMA ** | 60 °C 5d → 80 °C 1d **** |
2h-U-60 | 2 h | UDMA+TEGDMA ** | 60 °C 5d → 80 °C 1d **** |
3h-U-60 | 3 h | UDMA+TEGDMA ** | 60 °C 5d → 80 °C 1d **** |
Sample Name | Flexural Strength (MPa) | Flexural Modulus (GPa) | Vickers Hardness | Inorganic Content (wt%) |
---|---|---|---|---|
2h-T-100 | 107.8 (8.0) a | 13.4 (1.3) a | 204.8 (12.8) a | 71.8 (3.1) a |
2h-T-60 | 117.6 (6.5) a | 13.0 (1.1) a | 200.8 (13.0) a | 71.2 (3.3) a |
2h-U-100 | 119.0 (13.6) a | 13.5 (1.6) a | 210.3 (10.1) a | 73.0 (3.4) a |
1h-U-60 | 130.8 (19.2) ab | 14.3 (1.9) a | 213.6 (13.7) a | 73.2 (2.9) a |
2h-U-60 | 153.7 (9.6) b | 16.9 (2.0) ab | 218.3 (16.9) a | 75.6 (3.3) a |
3h-U-60 | 129.9 (25.2) ab | 22.2 (3.6) c | 299.2 (30.1) b | 89.6 (5.6) b |
DC | 143.4 (11.5) b | 8.3 (0.9) d | 82.7 (7.02) c | 69.4 (0.9) a |
AV | 208.0 (24.8) c | 11.8 (2.2) a | 72.5 (7.16) c | 60.6 (1.5) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawajiri, Y.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus. Materials 2021, 14, 1182. https://doi.org/10.3390/ma14051182
Kawajiri Y, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus. Materials. 2021; 14(5):1182. https://doi.org/10.3390/ma14051182
Chicago/Turabian StyleKawajiri, Yohei, Hiroshi Ikeda, Yuki Nagamatsu, Chihiro Masaki, Ryuji Hosokawa, and Hiroshi Shimizu. 2021. "PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus" Materials 14, no. 5: 1182. https://doi.org/10.3390/ma14051182
APA StyleKawajiri, Y., Ikeda, H., Nagamatsu, Y., Masaki, C., Hosokawa, R., & Shimizu, H. (2021). PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus. Materials, 14(5), 1182. https://doi.org/10.3390/ma14051182