The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Potential Energy and Force with Variable Interface Distance along the z Axis
3.2. Work of Separation with Respect to Interface Distance along z Axis and Three-Dimensional Work of Separation with Respect to x and y
3.3. Electron Density Difference and Density of States Analysis
3.4. Potential Energy Surfaces Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, J.; Yin, X.; Li, J.; Qi, W.; Huang, P.; Chen, X.; Luo, J. Tribo-induced interfacial material transfer of an atomic force microscopy probe addicting superlubricity in a WS2/graphene heterojunction. ACS Appl. Mater. Interfaces 2020, 12, 4031–4040. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xia, Y.; Song, H.; Chen, B.; Zhang, Z. Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 2017, 105, 118–124. [Google Scholar] [CrossRef]
- Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariappan, V.; Krishnamoorthy, K.; Pazhamalai, P.; Natarajan, S.; Sahoo, S.; Nardekar, S.; Kim, S. Antimonene dendritic nanostructures:dual-functional material for high-performance energy storage and harvesting devices. Nano Energy 2020, 77, 105248. [Google Scholar] [CrossRef]
- Leng, S.; Sun, X.; Yang, Y.; Zhang, R. Borophene as an anode material for Zn-ion batteries: A first-principles investigation. Mater. Res. Express 2019, 6, 085504. [Google Scholar] [CrossRef]
- Ashton, M.; Paul, J.; Sinnott, S.B.; Hennig, R.G. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Phys. Rev. Lett. 2017, 118, 106101. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band-Gap Transitions. Angew. Chem. Int. Ed. 2015, 54, 3112–3115. [Google Scholar] [CrossRef]
- Mandelli, D.; Leven, I.; Hod, O.; Urbakh, M. Sliding friction of graphene/hexagonal–boron nitride heterojunctions: A route to robust superlubricity. Sci. Rep. 2017, 7, 10851. [Google Scholar] [CrossRef]
- Leven, I.; Krepel, D.; Shemesh, O.; Hod, O. Robust Superlubricity in Graphene/h-BN Heterojunctions. J. Phys. Chem. Lett. 2013, 4, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Mandelli, D.; Hod, O.; Urbakh, M.; Ma, M.; Zheng, Q. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018, 17, 894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, J.; Pu, J.; Lu, Z. First-Principles Investigation on the Tribological Properties of h-BN Bilayer under Variable Load. Tribol. Lett. 2018, 66, 124. [Google Scholar] [CrossRef]
- Björkman, T.; Gulans, A.; Krasheninnikov, A.V.; Nieminen, R.M. van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108, 235502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Ma, T.; Liu, D.; Gao, L.; Li, X.; Zhang, J.; Hu, Y.; Wang, H.; Dai, Y.; et al. Superluricity of a graphene/MoS2 heterostructure: A combined experimental and DFT study. Nanoscale 2017, 9, 10846. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, F.; Bechstedt, F.; Schmidt, W.G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 2006, 73, 205101. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Li, J.B.; Li, S.S.; Xia, J.B.; Wang, L.M. Electronic structural Moiré pattern effects on MoS/MoSe 2D heterostructures. Nano Lett. 2013, 13, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Le Star, M.; Märkl, T.; Brown, S.A. Moiré patterns: A simple analytical model. 2D Mater. 2019, 7, 011005. [Google Scholar] [CrossRef]
- Zilibotti, G.; Righi, M.C. Ab Initio Calculation of the Adhesion and Ideal Shear Strength of Planar Diamond Interfaces with Different Atomic Structure and Hydrogen Coverage. Langmuir 2011, 27, 6862–6867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Q.; Liang, J.; Li, Q.; Dai, J.; Li, W. Optical properties of N and transition metal R (R=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) codoped anatase TiO2. Phys. B Condens. Matter 2012, 407, 2709–2715. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, Z.; Shi, W.; Leng, S.; Tang, B. Low friction of diamond sliding against Al2O3 ceramic ball based on the first principles calculations. Surf. Coat. Technol. 2015, 283, 129–134. [Google Scholar] [CrossRef]
- Cui, L.; Lu, Z.; Wang, L. Toward low friction in high vacuum for hydrogenated diamondlike carbon by tailoring sliding interface. ACS Appl. Mater. Interfaces 2013, 5, 5889–5893. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Hector, L.G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces. Phys. Rev. B 2003, 68, 1681–1685. [Google Scholar]
- Yue, Q.; Hector, L.G.; Ooi, N.; Adams, J.B. A first principles study of adhesion and adhesive transfer at Al(111)/graphite(0001). Surf. Sci. 2005, 581, 155–168. [Google Scholar]
- Landry, K.; Kalogeropoulou, S.; Eustathopoulos, N.; Naidich, Y.; Krasovsky, V. Characteristic contact angles in the Aluminium/vitreous carbon system. Scr. Mater. 1996, 34, 220–231. [Google Scholar] [CrossRef]
z (Å) | Fz (nN) | FvdW (nN) | FN (nN) |
---|---|---|---|
3.45 | 0 | 0.09 | 0.09 |
2.25 | 0 | 0.6 | 0.6 |
2.0 | 1.88 | 0.85 | 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Lu, Z.; Zhang, R. The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation. Materials 2021, 14, 1201. https://doi.org/10.3390/ma14051201
Jiang X, Lu Z, Zhang R. The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation. Materials. 2021; 14(5):1201. https://doi.org/10.3390/ma14051201
Chicago/Turabian StyleJiang, Xian, Zhibin Lu, and Renhui Zhang. 2021. "The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation" Materials 14, no. 5: 1201. https://doi.org/10.3390/ma14051201
APA StyleJiang, X., Lu, Z., & Zhang, R. (2021). The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation. Materials, 14(5), 1201. https://doi.org/10.3390/ma14051201