High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Targets Preparation
2.3. Magnetron Sputtering Process
2.4. Coatings and Thin Films Characterization Methods
3. Results
3.1. Cold-Sprayed Targets
3.2. HiPIMS Deposition Process and ITO Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Lieber, C.M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291, 851–853. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C.M. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature 2001, 409, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Noh, M.; Seo, I.; Park, J.; Chung, J.-S.; Lee, Y.S.; Kim, H.J.; Chang, Y.J.; Park, J.-H.; Kang, M.G.; Kang, C.Y. Spectroscopic Ellipsometry Investigation on the Excimer Laser Annealed Indium Thin Oxide Sol–Gel Films. Curr. Appl. Phys. 2016, 16, 145–149. [Google Scholar] [CrossRef]
- Hong, S.-J.; Song, S.-H.; Kim, B.J.; Lee, J.-Y.; Kim, Y.-S. ITO Nanoparticles Reused from ITO Scraps and Their Applications to Sputtering Target for Transparent Conductive Electrode Layer. Nano Converg. 2017, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Li, E.; Wang, A.X. Ultra-Compact and Broadband Electro-Absorption Modulator Using an Epsilon-near-Zero Conductive Oxide. Photonics Res. 2018, 6, 277–281. [Google Scholar] [CrossRef]
- Ellmer, K. Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Li, Q.; Tian, Z.; Zhang, Y.; Wang, Z.; Li, Y.; Ding, W.; Wang, T.; Yun, F. 3D ITO-Nanowire Networks as Transparent Electrode for All-Terrain Substrate. Sci. Rep. 2019, 9, 4983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-S.; Hsieh, C.-Y.; Wu, Y.-J.; Wei, Y.-S.; Lee, P.-M.; Hsieh, H.-M.; Liu, C.-Y. Mechanism of Conductivity Degradation of AZO Thin Film in High Humidity Ambient. Appl. Surf. Sci. 2013, 282, 32–37. [Google Scholar] [CrossRef]
- Jin, E.M.; Park, J.-Y.; Gu, H.-B.; Jeong, S.M. Synthesis of SnO2 Hollow Fiber Using Kapok Biotemplate for Application in Dye-Sensitized Solar Cells. Mater. Lett. 2015, 159, 321–324. [Google Scholar] [CrossRef]
- Hadri, A.; Taibi, M.; Loghmarti, M.; Nassiri, C.; Tlemçani, T.S.; Mzerd, A. Development of Transparent Conductive Indium and Fluorine Co-Doped ZnO Thin Films: Effect of F Concentration and Post-Annealing Temperature. Thin Solid Film. 2016, 601, 7–12. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Park, J.; Um, D.-S.; Lee, Y.; Ko, H. Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins. Adv. Funct. Mater. 2015, 25, 2841–2849. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Y.; Yan, Y.; Huo, Z.; Hao, C.; Peng, J.; Zhang, G. Mechanical Performance of Indium Zinc Oxide Films Deposited on Coating-Treated PMMA Substrates. Surf. Coat. Technol. 2019, 358, 604–610. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, B. Ag Nanowire Electrode with Patterned Dry Film Photoresist Insulator for Flexible Organic Light-Emitting Diode with Various Designs. Mater. Des. 2018, 160, 572–577. [Google Scholar] [CrossRef]
- Peiris, T.A.N.; Ghanizadeh, S.; Jayathilake, D.S.Y.; Hutt, D.A.; Wijayantha, K.G.U.; Conway, P.P.; Southee, D.J.; Parkin, I.P.; Marchand, P.; Darr, J.A.; et al. Aerosol-Assisted Fabrication of Tin-Doped Indium Oxide Ceramic Thin Films from Nanoparticle Suspensions. J. Mater. Chem. C 2016, 4, 5739–5746. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Ren, X.; Liu, J.; Tian, A.; Jiang, L.; Huang, S.; Zhou, W.; Zhang, L.; Yang, H. High-Power Hybrid GaN-Based Green Laser Diodes with ITO Cladding Layer. Photonics Res. 2020, 8, 279–285. [Google Scholar] [CrossRef]
- Yarali, E.; Koutsiaki, C.; Faber, H.; Tetzner, K.; Yengel, E.; Patsalas, P.; Kalfagiannis, N.; Koutsogeorgis, D.C.; Anthopoulos, T.D. Recent Progress in Photonic Processing of Metal-Oxide Transistors. Adv. Funct. Mater. 2020, 30, 1906022. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.H.; Hassan, Z.; Shuhaimi, A. Enhancement of Optical Transmittance and Electrical Resistivity of Post-Annealed ITO Thin Films RF Sputtered on Si. Appl. Surf. Sci. 2018, 443, 544–547. [Google Scholar] [CrossRef]
- Li, E.; Nia, B.A.; Zhou, B.; Wang, A.X. Transparent Conductive Oxide-Gated Silicon Microring with Extreme Resonance Wavelength Tunability. Photonics Res. 2019, 7, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Wu, G.-W.; Timofeev, I.V.; Zyryanov, V.Y.; Lee, W. Electro-Thermally Tunable Reflective Colors in a Self-Organized Cholesteric Helical Superstructure. Photonics Res. 2018, 6, 1094–1100. [Google Scholar] [CrossRef]
- Awasthi, V.; Garg, V.; Sengar, B.S.; Pandey, S.K.; Aaryashree; Kumar, S.; Mukherjee, C.; Mukherjee, S. Impact of Sputter-Instigated Plasmonic Features in TCO Films: For Ultrathin Photovoltaic Applications. Appl. Phys. Lett. 2017, 110, 103903. [Google Scholar] [CrossRef]
- Shen, Y.; Feng, Z.; Zhang, H. Study of Indium Tin Oxide Films Deposited on Colorless Polyimide Film by Magnetron Sputtering. Mater. Des. 2020, 193, 108809. [Google Scholar] [CrossRef]
- Szkutnik, P.D.; Roussel, H.; Lahootun, V.; Mescot, X.; Weiss, F.; Jiménez, C. Study of the Functional Properties of ITO Grown by Metalorganic Chemical Vapor Deposition from Different Indium and Tin Precursors. J. Alloys Compd. 2014, 603, 268–273. [Google Scholar] [CrossRef]
- Mohammadi, S.; Abdizadeh, H.; Golobostanfard, M.R. Opto-Electronic Properties of Molybdenum Doped Indium Tin Oxide Nanostructured Thin Films Prepared via Sol–Gel Spin Coating. Ceram. Int. 2013, 39, 6953–6961. [Google Scholar] [CrossRef]
- Zhang, L.; Lan, J.; Yang, J.; Guo, S.; Peng, J.; Zhang, L.; Tian, S.; Ju, S.; Xie, W. Study on the Physical Properties of Indium Tin Oxide Thin Films Deposited by Microwave-Assisted Spray Pyrolysis. J. Alloys Compd. 2017, 728, 1338–1345. [Google Scholar] [CrossRef]
- van den Ham, E.J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P.H.L.; Van Bael, M.K.; Hardy, A. 3D Indium Tin Oxide Electrodes by Ultrasonic Spray Deposition for Current Collection Applications. J. Power Sources 2017, 348, 130–137. [Google Scholar] [CrossRef]
- Gao, M.; Wu, X.; Liu, J.; Liu, W. The Effect of Heating Rate on the Structural and Electrical Properties of Sol–Gel Derived Al-Doped ZnO Films. Appl. Surf. Sci. 2011, 257, 6919–6922. [Google Scholar] [CrossRef]
- Hagendorfer, H.; Lienau, K.; Nishiwaki, S.; Fella, C.M.; Kranz, L.; Uhl, A.R.; Jaeger, D.; Luo, L.; Gretener, C.; Buecheler, S.; et al. Highly Transparent and Conductive ZnO: Al Thin Films from a Low Temperature Aqueous Solution ApproaC. Adv. Mater. 2014, 26, 632–636. [Google Scholar] [CrossRef]
- Park, T.; Kim, D. Excimer Laser Sintering of Indium Tin Oxide Nanoparticles for Fabricating Thin Films of Variable Thickness on Flexible Substrates. Thin Solid Film. 2015, 578, 76–82. [Google Scholar] [CrossRef]
- Cheong, W.-S.; Hong, C.-H.; Shin, J.-H.; Kim, K.-H.; Park, N.-M.; You, S.-J.; Kim, J.-H.; Kim, Y.-S. Low Temperature Fabrication of Indium-Tin Oxide Film by Using Ionized Physical Vapor Deposition Method. Surf. Coat. Technol. 2015, 266, 10–13. [Google Scholar] [CrossRef]
- May, C.; Strümpfel, J. ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Film. 1999, 351, 48–52. [Google Scholar] [CrossRef]
- del Rio, E.; Ivanov, E.; Omi, K.; Teraoka, H. High performance of high density and high transparency Indium Tin oxide(ITO) and Zinc Aluminum Oxide(ZAO). In Proceedings of the 56th Annual Technical Conference, Providence, RI, USA, 20–25 April 2013. [Google Scholar]
- Carter, D.C. Arc prevention in magnetron puttering process. In Proceedings of the 51st Annual Technical Conference, Chicago, IL, USA, 19–24 April 2008. [Google Scholar]
- Wang, H.; Xu, X.; Li, X.; Zhang, J.; Li, C. Synthesis and sintering of indium tin oxide nanoparticles by citrate-Nitrate combustion method. Rare Met. 2010, 29, 355–360. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Wang, H.; Zhu, G.; Xu, H.; Zhou, C.; Yuan, C.; Yang, Z. Sintering behavior and refining grains of high density tin doped indium oxide targets with low tin oxide content. J. Mater. Sci. Mater. Electron. 2016, 27, 3298–3304. [Google Scholar] [CrossRef]
- Chang, S.Y.; Tsao, L.C.; Chiang, M.J.; Chuang, T.H.; Tung, C.N.; Pan, G.H. Active Soldering of Indium Tin Oxide(ITO) with Cu in Air Using an Sn3.5Ag4Ti(Ce, Ga) Filler. J. Mater. Eng. Perform. 2003, 12, 383–389. [Google Scholar] [CrossRef]
- Winnicki, M.; Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.; Ambroziak, A. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials. Scanning 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.; Saha, G.C. Cold Spray: Its Prominence as an Additive Manufacturing Technology. In Cold Spray in the Realm of Additive Manufacturing. Materials Forming, Machining and Tribology, 1st ed.; Pathak, S., Saha, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Schmidt, T.; Assadi, H.; Gärtner, F.; Richter, H.; Stoltenhoff, T.; Kreye, H.; Klassen, T. From particles acceleration to impact and bonding in cold spraying. J. Therm. Spray Technol. 2009, 18, 794–808. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xie, Y.; Yan, X.; Ahmed, M.; Lupoi, R.; Wang, J.; Ren, Z.; Liao, H.; Yin, S. Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Addit. Manuf. 2020, 36, 101434. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernández-Martínez, I.; Wennberg, A.; Molina-Aldareguia, J.M.; Castillo-Rodríguez, M.; Rojas, T.C.; Sánchez-López, J.C.; González, M.U.; García-Martín, J.M.; Li, H.; et al. Adhesion Enhancement of DLC Hard Coatings by HiPIMS Metal Ion Etching Pretreatment. Surf. Coat. Technol. 2018, 349, 787–796. [Google Scholar] [CrossRef]
- Rezek, J.; Novák, P.; Houška, J.; Pajdarová, A.D.; Kozák, T. High-Rate Reactive High-Power Impulse Magnetron Sputtering of Transparent Conductive Al-Doped ZnO Thin Films Prepared at Ambient Temperature. Thin Solid Film. 2019, 679, 35–41. [Google Scholar] [CrossRef]
- Tamai, T.; Nabeta, Y.; Sawada, S.; Hattori, Y. Property of Tin Oxide Film Formed on Tin-Plated Connector Contacts. In Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, 4–7 October 2010. [Google Scholar] [CrossRef]
- Huh, M.-Y.; Kim, S.-H.; Ahn, J.-P.; Park, J.-K.; Kim, B.-K. Oxidation of nanophase tin particles. NanoStruct. Mater. 1999, 11, 211–220. [Google Scholar] [CrossRef]
- Wiatrowski, A.; Kijaszek, W.; Posadowski, W.M.; Oleszkiewicz, W.; Jadczak, J.; Kunicki, P. Deposition of Diamond-like Carbon Thin Films by the High Power Impulse Magnetron Sputtering Method. Diam. Relat. Mater. 2017, 72, 71–76. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, E.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Konyashin, I.; Lachmann, F.; Ries, B.; Mazilkin, A.A.; Straumal, B.B.; Kübel, C.; Llanes, L.; Baretzky, B. Strengthening zones in the Co matrix of WC–Co cemented carbides. Scr. Mater. 2014, 83, 17–20. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Lu, L.; Li, D.; Mohanty, P.; Wang, Y. Microstructure and properties of Ag/SnO2 coatings prepared by cold spraying. Surf. Coat. Technol. 2013, 236, 224–229. [Google Scholar] [CrossRef]
- Munday, G.; Hogan, J.; McDonald, A. On the Microstructure-Dependency of Mechanical Properties and Failure of Low-Pressure Cold-Sprayed Tungsten Carbide-Nickel Metal Matrix Composite Coatings. Surf. Coat. Technol. 2020, 396, 125947. [Google Scholar] [CrossRef]
- Raoelison, R.N.; Xie, Y.; Sapanathan, T.; Planche, M.P.; Kromer, R.; Costil, S.; Langlade, C. Cold Gas Dynamic Spray Technology: A Comprehensive Review of Processing Conditions for Various Technological Developments till to Date. Addit. Manuf. 2018, 19, 134–159. [Google Scholar] [CrossRef]
- Ko, K.H.; Lee, H.; Choi, J.O. Effect of Sn Particle Size on the Intermetallic Compound Formations of Cold Sprayed Sn–Ni Coatings. Appl. Surf. Sci. 2011, 257, 2970–2977. [Google Scholar] [CrossRef]
- Hassani-Gangaraj, M.; Veysset, D.; Nelson, K.A.; Schuh, C.A. Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer. Appl. Surf. Sci. 2019, 476, 528–532. [Google Scholar] [CrossRef]
- Hemeda, A.A.; Zhang, C.; Hu, X.Y.; Fukuda, D.; Cote, D.; Nault, I.M.; Nardi, A.; Champagne, V.K.; Ma, Y.; Palko, J.W. Particle-based simulation of cold spray: Influence of oxide layer on impact process. Addit. Manuf. in press. [CrossRef]
- Zhao, X.; Jin, J.; Cheng, J.-C.; Lee, J.-W.; Wu, K.-H.; Lin, K.-C.; Tsai, J.-R.; Liu, K.-C. Structural and Optical Properties of Zirconia Thin Films Deposited by Reactive High-Power Impulse Magnetron Sputtering. Thin Solid Film. 2014, 570, 404–411. [Google Scholar] [CrossRef]
- Wie, S.-M.; Hong, C.-H.; Oh, S.K.; Cheong, W.S.; Yoon, Y.J.; Kwak, J.S. Fully crystallized ultrathin ITO films deposited by sputtering with in-situ electron beam irradiation for touch-sensitive screens. Ceram. Int. 2014, 40, 11163–11169. [Google Scholar] [CrossRef]
- Guo, E.-J.; Guo, H.; Lua, H.; Jin, K.; He, M.; Yang, G. Structure and characteristics of ultrathin indium tin oxide films. Appl. Phys. Lett. 2011, 98, 011905. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Huanga, S.M.; Zhua, H.B.; Xua, X.B.; Suna, Z.; Chena, Y.W.; Huang, F.Q. Preparation of indium tin oxide thin films without external heating for application in solar cells. J. Non-Cryst. Solids 2008, 354, 5480–5484. [Google Scholar] [CrossRef]
- Kim, J.; Shrestha, S.; Souri, M.; Connell, J.G.; Park, S.; Seo, A. High-temperature optical properties of indium tin oxide thin-films. Sci. Rep. 2020, 10, 12486. [Google Scholar] [CrossRef]
- Teixeira, V.; Cui, H.N.; Meng, L.J.; Fortunato, E.; Martins, R. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Film. 2002, 420–421, 70–75. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Zhao, W.; Lu, K.; Ji, X.; Boukherroub, R. Preparation of Low-Resistance and Residue-free ITO Films for Large-scale 3D Displays. ACS Appl. Mater. Interfaces 2019, 11, 45903–45913. [Google Scholar] [CrossRef]
- Mohamed, S.; El-Hossary, F.; Gamal, G.; Kahlid, M. Properties of Indium Tin Oxide Thin Films Deposited on Polymer Substrates. Acta Phys. Pol. A 2009, 115, 704–708. [Google Scholar] [CrossRef]
- Powder Diffraction File. In Joint Committee on Powder Diffraction Standards; ASTM: Philadelphia, PA, USA, 1967.
- Zhang, H.; Cherng, J.-S.; Chen, Q. Recent Progress on High Power Impulse Magnetron Sputtering (HiPIMS): The Challenges and Applications in Fabricating VO2 Thin Film. AIP Adv. 2019, 9, 035242. [Google Scholar] [CrossRef] [Green Version]
- Stamate, E. Lowering the Resistivity of Aluminum Doped Zinc Oxide Thin Films by Controlling the Self-Bias during RF Magnetron Sputtering. Surf. Coat. Technol. 2020, 402, 126306. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winnicki, M.; Wiatrowski, A.; Mazur, M. High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target. Materials 2021, 14, 1228. https://doi.org/10.3390/ma14051228
Winnicki M, Wiatrowski A, Mazur M. High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target. Materials. 2021; 14(5):1228. https://doi.org/10.3390/ma14051228
Chicago/Turabian StyleWinnicki, Marcin, Artur Wiatrowski, and Michał Mazur. 2021. "High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target" Materials 14, no. 5: 1228. https://doi.org/10.3390/ma14051228
APA StyleWinnicki, M., Wiatrowski, A., & Mazur, M. (2021). High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target. Materials, 14(5), 1228. https://doi.org/10.3390/ma14051228