Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Coating
2.2. Characterization Methods
3. Results and Discussion
3.1. Microstructure, Kinetics Growth and Phase Constituent of Binary Zn-Al Coatings
3.2. Effect of Magnesium
3.2.1. Cross-Section of Coatings
3.2.2. Coating Thickness
3.2.3. Microstructure (SEM) and EDS Analysis
3.2.4. X-ray Phase Analysis (XRD)
4. Conclusions
- (1)
- The periodic layered structure is made of alternating FeAl3 phase layers and a bath alloy (Zn + Al + Mg). The alloy layers (Zn + Al + Mg) are composed of dendrites of a solid solution of Al in Zn. The interdendritic spaces are filled mainly by the MgZn2 intermetallic phase where small areas of Al in Zn solution are also located.
- (2)
- Additives of 3 wt.% Mg for Zn-23Al and Zn-31Al baths reduce the thickness of the coating, while the addition of 6 wt.% Mg causes complete loss of the periodic layered structure in coatings obtained in the Zn-23Al bath and limitation of its growth in the Zn-31Al bath.
- (3)
- The limitation of the growth of the periodic layered structure in the coating obtained in the Zn-31Al6Mg bath is due to the formation of a compact layer on the substrate composed of an FeAl3 phase layer containing MgZn2 phase precipitates and Fe2Al5 phase layer. This structure does not tend to detach the FeAl3 phase sequentially.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liberski, P. Antykorozyjne Metalowe Powłoki Zanurzeniowe; Politechnika Śląska: Gliwice, Poland, 2013. [Google Scholar]
- Suliga, M.; Wartacz, R. The influence of the angle of working part of die on the zinc coating thickness and mechanical properties of medium carbon steel wires. Arch. Metall. Mater. 2019, 64, 1295–1299. [Google Scholar] [CrossRef]
- Kania, H.; Liberski, P. The Structure and Growth Kinetics of Zinc Coatings on Link Chains Produced of the 23MnNiCrMo5-2 Steel. Solid State Phenom. 2014, 212, 145–150. [Google Scholar] [CrossRef]
- Kania, H.; Saternus, M.; Kudláček, J. Structural aspects of decreasing the corrosion resistance of zinc coating obtained in baths with Al, Ni, and Pb additives. Materials 2020, 13, 385. [Google Scholar] [CrossRef] [Green Version]
- Tatarek, A.; Saternus, M. Badanie zjawisk rozpuszczania dyfuzyjnego stali reaktywnych w kąpieli cynkowej z dodatkiem bizmutu. Ochr. Przed Korozją 2018, 7, 186–190. (In Polish) [Google Scholar]
- Kania, H.; Saternus, M.; Kudláček, J. Impact of Bi and Sn on Microstructure and Corrosion Resistance of Zinc Coatings Obtained in Zn-AlNi Bath. Materials 2020, 13, 3788. [Google Scholar] [CrossRef]
- Kania, H.; Mendala, J.; Kozuba, J.; Saternus, M. Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing—A Review. Materials 2020, 13, 4168. [Google Scholar] [CrossRef] [PubMed]
- Prosek, T.; Larche, N.; Vlot, M.; Goodwin, F.; Thierry, D. Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications. Mater. Corros. 2010, 61, 412–420. [Google Scholar] [CrossRef]
- Wang, T. Study on Structure and Corrosion Resistance of Zinc-Aluminium Based Alloy Coatings. Masters Thesis, Xiangtan University, Xiangtan, China, 2013. [Google Scholar]
- Gao, L.; Li, Z.; Kuang, X.; Yin, F.; Ji, H. Formation of periodic layered structure during hot-dip galvanizing in Al-Zn-Mg bath. Surf. Coat. Technol. 2016, 304, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Rijnders, M.R. Periodic Layer Formation during Solid State Reactions. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Osinski, K.; Vriend, A.W.; Bastin, G.F.; van Loo, F.J.J. Periodic Formation of FeSi in Diffusion couples Fe(15 wt.% Si)-Zn. Z. Met. 1982, 73, 258–261. [Google Scholar]
- Liu, Y.; Tang, M.Y.; Song, Y.; Wu, C.; Peng, H.; Su, X.; Wang, J. Reactions of FeCr alloys with liquid zinc in hot-dip galvanizing. Surf. Coat. Technol. 2015, 276, 714–720. [Google Scholar] [CrossRef]
- He, M.; Su, X.P.; Yin, F.C.; Wang, J.H.; Li, Z. Periodic layered structure in Ni3Si/Zn diffusion couples. Scr. Mater. 2008, 59, 411–413. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Y.; Zhang, Y.; Cserháti, C.; Csik, A. Investigation of periodic-layered structure in Zn/CuxTiy systems. Acta Metall. Sin. 2016, 52, 349–354. [Google Scholar] [CrossRef]
- Wojewoda-Budka, J.; Wierzbicka-Miernik, A.; Litynska-Dobrzynska, L.; Korneva, A.; Kodentsov, A. On Constituents of the Periodic Layered Microstructure Developed in the Solid-State Reaction Between Zinc and Co2Si. Met. Mater Trans A. 2020, 51, 3497–3503. [Google Scholar] [CrossRef]
- Mazaudier, F.; Proye, C.; Hodaj, F. Further insight into mechanisms of solid-state interactions in UMo/Al system. Nucl. Mat. 2008, 377, 476–485. [Google Scholar] [CrossRef]
- Oberhauser, S.; Strobl, C.; Schreiber, G.; Wuestefeld, C.; Rafaja, D. Formation of periodic patterns in the (Ni,W)/Al diffusion couples. Surf. Coat. Technol. 2010, 204, 2307–2315. [Google Scholar] [CrossRef]
- Nowacki, K.; Kania, H.; Wieczorek, J.; Smalcerz, A. The Properties of ZnAlMg Alloys for Batch Hot Dip Metallization. Solid State Phenom. 2016, 246, 143–148. [Google Scholar] [CrossRef]
- Chen, Z.W.; Gregory, J.T.; Sharp, R.M. Intermetallic phases formed during hot dipping of Low Carbon Steel in a Zn-5 Pct Al Melt at 450 °C. Met. Trans. A 1992, 23, 2393–2400. [Google Scholar] [CrossRef]
- Nishimoto, A.; Inagaki, J.; Naksoks, K. Effects of surface microstructure and chemical compositions of steels on formation of Fe-Zn compounds during continuous galvanizing. Trans. Iron Steel Inst. Japan 1986, 26, 807–813. [Google Scholar] [CrossRef]
- Mendala, J. Influence of the cooling method on the structure of 55AlZn coatings. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Katowice, Poland, 2011. [Google Scholar]
- McDevitt, E.; Morimoto, Y.; Meshii, M. Characterization of the Fe-Al interfacial layer in a commercial hot-dip galvanized coating. ISIJ Int. 1997, 37, 776–782. [Google Scholar] [CrossRef]
- Horstmann, D. The Course of Reactions between Iron and Molten Zinc Containing Aluminum; Zinc Development Association: London, UK, 1976. [Google Scholar]
- Ghuman, A.R.P.; Goldstein, J.I. Reaction mechanisms for the coatings formed during the hot dipping of iron in 0 to 10 pct Al-Zn baths at 450 to 700 °C. Metall. Trans. 1971, 2, 2903–2914. [Google Scholar] [CrossRef]
- Okamoto, H. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 2010. [Google Scholar]
- Selverian, J.H.; Marder, A.R.; Notis, M.R. The effects of silicon on the reaction between solid iron and liquid 55 wt pct Al−Zn baths. Met. Trans. A. 1989, 20, 543–555. [Google Scholar] [CrossRef]
- Kania, H. The Structure of Coatings Obtained in the Zn-31Al-3Mg Bath on High-Silicon Steel. Solid State Phenom. 2014, 212, 101–106. [Google Scholar] [CrossRef]
- Su, X.; Wu, C.; Liu, D.; Yin, F.; Zhu, Z.; Yang, S. Effect of vanadium on galvanizing Si-containing steels. Surf. Coat. Technol. 2010, 205, 213–218. [Google Scholar] [CrossRef]
- Ranjan, M.; Tewari, R.; van Ooij, W.J.; Vasudevan, V.K. Effect of Ternary Additions on the Structure and Properties of Coatings Produced by a High Aluminum Galvanizing Bath. Met. Trans. A 2004, 35, 3707–3720. [Google Scholar] [CrossRef]
- Peng, H.P.; Su, X.P.; Wang, J.H.; Li, Z. Interface reaction mechanism for galvanizing in Zn-Al baths. Chin. J. Nonferrous. Met. 2012, 22, 3168–3175. [Google Scholar]
- Perrot, P.; Tissier, J.C.; Dauphin, J.Y. Stable and Metastable Equilibria in the Fe-Zn-Al System at 450 °C. Z. Met. 1992, 83, 786–790. [Google Scholar]
- Villars, P.; Prince, A.; Okamoto, H. Handbook of Ternary Alloy Phase Diagram; ASM International: Materials Park, OH, USA, 1997. [Google Scholar]
- Kania, H. Kształtowanie Struktury Oraz Odporność Korozyjna Powłok Zn-Al Otrzymanych Metodą Metalizacji Zanurzeniowej; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2017. [Google Scholar]
- Chen, Z.W.; Sharp, R.M.; Gregory, J.T. Fe-Al-Zn Ternary Phase Diagram at 450 °C. Mater. Sci. Technol. 1990, 6, 1173–1176. [Google Scholar] [CrossRef]
- Xie, Y.; Du, A.; Zhao, X.; Ma, R.; Fan, Y.; Cao, X. Effect of Mg on Fe–Al interface structure of hot–dip galvanized Zn–Al–Mg alloy coatings. Surf. Coat. Technol. 2018, 337, 313–320. [Google Scholar] [CrossRef]
- Selverian, J.H.; Marder, A.R.; Notis, M.R. The reaction between solid iron and liquid Al-Zn baths. Metall. Trans. A 1988, 19, 1193–1203. [Google Scholar] [CrossRef]
- Richards, R.W.; Jones, R.D.; Clements, P.D.; Clarke, H. Metallurgy of continuous hot dip aluminizing. Int. Mater. Rev. 1994, 39, 191–212. [Google Scholar] [CrossRef]
Content of Elements | ||||||||
---|---|---|---|---|---|---|---|---|
Mg-K | Al-K | Fe-K | Zn-K | |||||
wt.% | at.% | wt.% | at.% | wt.% | at.% | wt.% | at.% | |
1 | - | - | 71.0 | 85.6 | - | - | 29.0 | 14.4 |
2 | 1.1 | 1.9 | 37.5 | 56.9 | 25.8 | 18.9 | 35.6 | 22.3 |
3 | 13.9 | 29.5 | 2.4 | 4.5 | - | - | 83.7 | 66.0 |
4 | 2.9 | 4.2 | 56.2 | 73.7 | - | - | 40.9 | 22.1 |
5 | 1.3 | 3.3 | 3.0 | 6.9 | - | - | 95.7 | 89.8 |
6 | - | - | 22.9 | 41.9 | - | - | 77.1 | 58.1 |
7 | - | - | 47.1 | 66.1 | 32.6 | 22.1 | 20.4 | 11.8 |
8 | 12.6 | 27.3 | 2.0 | 3.4 | 2.3 | 1.9 | 95.7 | 67.4 |
9 | 1.1 | 2.2 | 24.8 | 42.3 | 20.3 | 16.8 | 54.9 | 38.7 |
10 | - | - | 54.9 | 71.6 | 45.1 | 28.4 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saternus, M.; Kania, H. Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath. Materials 2021, 14, 1259. https://doi.org/10.3390/ma14051259
Saternus M, Kania H. Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath. Materials. 2021; 14(5):1259. https://doi.org/10.3390/ma14051259
Chicago/Turabian StyleSaternus, Mariola, and Henryk Kania. 2021. "Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath" Materials 14, no. 5: 1259. https://doi.org/10.3390/ma14051259
APA StyleSaternus, M., & Kania, H. (2021). Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath. Materials, 14(5), 1259. https://doi.org/10.3390/ma14051259