Performance-Guided Design of Permeable Asphalt Concrete with Modified Asphalt Binder Using Crumb Rubber and SBS Modifier for Sponge Cities
Abstract
:1. Introduction
2. Research Objective and Scope
3. Materials and Experimental Design
3.1. Preparation of Sponge City (SC) Asphalt Binder
3.1.1. Virgin Asphalt Binder
3.1.2. The Modified Asphalt Binder
3.2. Preparation of Porous Asphalt Concrete
3.3. Engineering Performance Test
3.4. MSCR Test
3.5. Linear Amplitude Sweep (LAS) Test
3.6. Freeze–Thaw Splitting Test
3.7. Hamburg Wheel-Tracking Test
3.8. Resilient Modulus Test
3.9. Permeability Coefficient Test
4. Results Analysis and Discussion
4.1. Results of the Engineering Property Test
4.2. Results of the Multiple Stress Creep Recovery (MSCR) Test
4.3. Results of the Linear Amplitude Sweep (LAS) Test
4.4. Results of the Freeze–Thaw Splitting Test
4.5. Results of the Hamburg Wheel-Tracking Test
4.6. Results of the Resilient Modulus Test
4.7. Results of the Permeability Coefficient Test
5. Conclusions
- Given the same void ratio, the optimum asphalt content of PAC gradually increases along with the increased content of CR. However, the impact of the SBS modifier and 10% CR on the optimum asphalt content is not significant;
- The CR and SBS modifier can improve the high temperature performance, rutting performance and fatigue performance regarding the results of engineering property test, MSCR test and LAS test. A 15% content of CR is preferable;
- The addition of CR and SBS modifier can improve the water stability and crack resistance of PAC, but the content of CR should be appropriate and preferably controlled between 10% and 15%;
- Adding CR and the SBS modifier can significantly improve the rutting resistance and resilience modulus of PAC, but CR in a high content (generally over 15%) can significantly reduce the resilience modulus of PAC. Therefore, the content of CR should be preferably controlled below 15% when producing PAC;
- Given the same void ratio, the permeability coefficient of the CR/SBS composite modified PAC is lower than that of conventional matrix PAC. Therefore, a proper way to ensure the water permeability of CR/SBS composite modified PAC is to increase its design void ratio.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, K.; Li, D.; Yuan, H.; Fu, W.; Qiao, Q.; Wang, S. “Sponge City”: Theory and Practice. City Plan. Rev. 2015, 39, 26–36. [Google Scholar]
- Wei, J.; He, J. Numerical simulation for analyzing the thermal improving effect of evaporative cooling urban surfaces on the urban built environment. Appl. Therm. Eng. 2013, 51, 144–154. [Google Scholar] [CrossRef]
- Liu, X.; Bao, Y. The Practice of Holistic Green Campus Design in Hot and Humid Regions—Case Study of China Market Capital Institute and The Chinese University of Hong Kong, Shenzhen. South Archit. 2019, 5, 60–67. [Google Scholar]
- Xu, P.; Si, S.; Zhang, J.; Zhang, Y.; Zheng, K.; Sun, K. Study on control effects of permeable asphalt road and road retention on water quality and quantity of runoff. Water Wastewater Eng. 2015, 51, 64–69. [Google Scholar]
- Luo, S.; Lu, Q.; Qian, Z. Performance evaluation of epoxy modified open-graded porous asphalt concrete. Constr. Build. Mater. 2015, 76, 97–102. [Google Scholar] [CrossRef]
- Jiang, W.; Sha, A.; Xiao, J. Experimental Study on Relationships among Composition, Microscopic Void Features, and Performance of Porous Asphalt Concrete. J. Mater. Civ. Eng. 2015, 27, 04015028. [Google Scholar] [CrossRef]
- Wang, Y.; Leng, Z.; Wang, G. Structural contribution of open-graded friction course mixes in mechanistic–empirical pavement design. Int. J. Pavement Eng. 2014, 15, 731–741. [Google Scholar] [CrossRef]
- Xu, H.; Shi, H.; Zhang, H.; Li, H.; Leng, Z.; Tan, Y. Evolution of dynamic flow behavior in asphalt mixtures exposed to freeze-thaw cycles. Constr. Build. Mater. 2020, 255, 119320. [Google Scholar] [CrossRef]
- Lin, S.; Hung, W.; Leng, Z. Air pollutant emissions and acoustic performance of hot mix asphalts. Constr. Build. Mater. 2016, 129, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Sha, A.; Liu, X.; Luan, B.; Gao, J.; Jiang, W.; Ma, F. State-of-the-art of porous asphalt pavement: Experience and considerations of mixture design. Constr. Build. Mater. 2020, 262, 119998. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Martin, A.E.; Estakhri, C. A review of mix design and evaluation research for permeable friction course mixtures. Constr. Build. Mater. 2011, 25, 1159–1166. [Google Scholar] [CrossRef]
- Hernandez-Saenz, M.A.; Caro, S.; Arámbula-Mercado, E.; Martin, A.E. Mix design, performance and maintenance of Permeable Friction Courses (PFC) in the United States: State of the Art. Constr. Build. Mater. 2016, 111, 358–367. [Google Scholar] [CrossRef]
- Takahashi, S. Comprehensive study on the porous asphalt effects on expressways in Japan: Based on field data analysis in the last decade. Road Mater. Pavement Des. 2013, 14, 239–255. [Google Scholar] [CrossRef]
- Cao, R.; Leng, Z.; Hsu, S.-C.; Hung, W.-T. Modelling of the pavement acoustic longevity in Hong Kong through machine learning techniques. Transp. Res. Part. D Transp. Environ. 2020, 83, 102366. [Google Scholar] [CrossRef]
- Wang, D.; Schacht, A.; Leng, Z.; Leng, C.; Kollmann, J.; Oeser, M. Effects of material composition on mechanical and acoustic performance of poroelastic road surface (PERS). Constr. Build. Mater. 2017, 135, 352–360. [Google Scholar] [CrossRef]
- Bernhard, R.; Wayson, R.L.; Haddock, J.; Neithalath, N.; El-Aassar, A.; Olek, J.; Pellinen, T.; Weiss, W.J. An Introduction to Tire/Pavement Noise of Asphalt Pavement; Institute of Safe, Quiet and Durable Highways, Purdue University: West Lafayette, IN, USA, 2005. [Google Scholar]
- Kandhal, P.S. Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses; National Asphalt Pavement Association: Greenbelt, MD, USA, 2002. [Google Scholar]
- Liu, M.; Huang, X.; Xue, G. Effects of double layer porous asphalt pavement of urban streets on noise reduction. Int. J. Sustain. Built Environ. 2016, 5, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Andersen, B.; Kragh, J.; Bendsen, H. Acoustic Performance-Low Noise Road Pavements; Danish Road Directorate: Copenhagen, Denmark, 2006.
- Vieira, T.; Lundberg, J.; Genell, A.; Sandberg, U.; Blomqvist, G.; Gustafsson, M.; Janhäll, S.; Erlingsson, S. In Porous pavement for reduced tyre/road noise and improved air quality: Initial results from a case study. In Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019, Montreal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Ferguson, B. Porous Pavements; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Chen, J.; Chu, R.; Wang, H.; Zhang, L.; Chen, X.; Du, Y. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. J. Clean. Prod. 2019, 237, 117722. [Google Scholar] [CrossRef]
- Jin, J.; Liu, S.; Gao, Y.; Liu, R.; Huang, W.; Wang, L.; Xiao, T.; Lin, F.; Xu, L.; Zheng, J. Fabrication of cooling asphalt pavement by novel material and its thermodynamics model. Constr. Build. Mater. 2021, 272, 121930. [Google Scholar] [CrossRef]
- Jin, J.; Gao, Y.; Wu, Y.; Liu, S.; Liu, R.; Wei, H.; Qian, G.; Zheng, J. Rheological and adhesion properties of nano-organic palygorskite and linear SBS on the composite modified asphalt. Powder Technol. 2021, 377, 212–221. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Leng, Z.; Wu, C.; Zhang, Z.; Wang, D.; Oeser, M. Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants. J. Clean. Prod. 2020, 246, 119008. [Google Scholar] [CrossRef]
- Yu, H.; Deng, G.; Zhang, Z.; Zhu, M.; Gong, M.; Oeser, M. Workability of rubberized asphalt from a perspective of particle effect. Transp. Res. Part D Transp. Environ. 2021, 91, 102712. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Wang, D. Evaluation and Validation of Fatigue Testing Methods for Rubberized Bituminous Specimens. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 603–610. [Google Scholar] [CrossRef]
- Murayama, M.; Itoh, A.; Hanyuu, A.; Kanno, H. Current status of R&D and development history of special polymer modified bitumen. J. Modif. Asph. 2003, 21, 8–19. [Google Scholar]
- Shadman, M.; Ziari, H. Laboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: A dissipated energy approach. Constr. Build. Mater. 2017, 138, 434–440. [Google Scholar] [CrossRef]
- Yu, H.; Leng, Z.; Zhou, Z.; Shih, K.; Xiao, F.; Gao, Z. Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber. J. Clean. Prod. 2017, 141, 336–345. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Deng, G.-S.; Wang, D.-Y.; Zhang, Z.-Y.; Oeser, M. Warm asphalt rubber: A sustainable way for waste tire rubber recycling. J. Central South Univ. 2020, 27, 3477–3498. [Google Scholar] [CrossRef]
- JTG E20-2011 Standard Test Methods of Asphalt and Asphalts Mixtures for Highway Engineering; China Ministry of Transport: Beijing, China, 2011.
- Yu, H.; Leng, Z.; Dong, Z.; Tan, Z.; Guo, F.; Yan, J. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. 2018, 175, 392–401. [Google Scholar] [CrossRef]
- ASTM International. ASTM D36 Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus); ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- ASTM International. ASTM D5 Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- ASTM International. ASTM D 4402-02 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Xu, G.; Wang, H.; Zhu, H. Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr. Build. Mater. 2017, 151, 801–808. [Google Scholar] [CrossRef]
- Zhang, J.; Walubita, L.F.; Faruk, A.N.; Karki, P.; Simate, G.S. Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—A laboratory study. Constr. Build. Mater. 2015, 94, 218–227. [Google Scholar] [CrossRef]
- Hossain, Z.; Ghosh, D.; Zaman, M.; Hobson, K. Use of the Multiple Stress Creep Recovery (MSCR) Test Method to Characterize Polymer-Modified Asphalt Binders. J. Test. Eval. 2015, 44, 507–520. [Google Scholar] [CrossRef]
- Sabouri, M.; Mirzaiyan, D.; Moniri, A. Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance. Constr. Build. Mater. 2018, 171, 281–290. [Google Scholar] [CrossRef]
Test Item | Test Result | Test Method |
---|---|---|
Penetration (0.1 mm) | 68 | T0604 |
Softening Point (°C) | 50 | T0606 |
Ductility (25 °C) (cm) | 125 | T0605 |
Density (25 °C) (g/cm3) | 1.048 | T0603 |
Sieve Size (mm) | Passing Rate (%) |
---|---|
1.18 | 100 |
0.6 | 98.2 |
0.3 | 82 |
0.15 | 7 |
0.075 | 0 |
Binder Type | 4% SBS + 20% CR | 4% SBS + 15% CR | 4% SBS + 10% CR | 4% SBS | Base Asphalt |
---|---|---|---|---|---|
Optimum Asphalt Content | 6% | 5.8% | 5.4% | 5.3%% | 5.4% |
Drain-Down Rate | 0.11% | 0.13% | 0.16% | 0.20% | 0.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Liu, X.; Zhang, S.; Zheng, Y.; Ding, Q.; Tong, B. Performance-Guided Design of Permeable Asphalt Concrete with Modified Asphalt Binder Using Crumb Rubber and SBS Modifier for Sponge Cities. Materials 2021, 14, 1266. https://doi.org/10.3390/ma14051266
Huang W, Liu X, Zhang S, Zheng Y, Ding Q, Tong B. Performance-Guided Design of Permeable Asphalt Concrete with Modified Asphalt Binder Using Crumb Rubber and SBS Modifier for Sponge Cities. Materials. 2021; 14(5):1266. https://doi.org/10.3390/ma14051266
Chicago/Turabian StyleHuang, Wentong, Xiao Liu, Shaowei Zhang, Yu Zheng, Qile Ding, and Bin Tong. 2021. "Performance-Guided Design of Permeable Asphalt Concrete with Modified Asphalt Binder Using Crumb Rubber and SBS Modifier for Sponge Cities" Materials 14, no. 5: 1266. https://doi.org/10.3390/ma14051266
APA StyleHuang, W., Liu, X., Zhang, S., Zheng, Y., Ding, Q., & Tong, B. (2021). Performance-Guided Design of Permeable Asphalt Concrete with Modified Asphalt Binder Using Crumb Rubber and SBS Modifier for Sponge Cities. Materials, 14(5), 1266. https://doi.org/10.3390/ma14051266