Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments
Abstract
:1. Introduction
2. Experimental Techniques
2.1. Sample Preparation
2.2. Storage Environment Conditions
2.3. The X-ray Absorption Near-Edge Structure (XANES)
2.4. X-ray Photoelectron Spectroscopy (XPS)
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3. Experimental Results
3.1. XANES Measurements
3.1.1. B K-Edge XANES
3.1.2. C K-Edge XANES
3.1.3. O K-Edge XANES
3.2. XPS Measurements
3.3. FTIR Absorption Spectra
4. Discussion
- First oxygen diffused into the film. Known from the previous calculation of density functional theory (DFT), O2 dissociation proceeds on a Pd layer with reaction barriers of 0.72 eV [26]. The energy of the reaction barriers decreases to 0.63 eV when B and Pd exist simultaneously [26], indicating B and Pd enhance the decomposition of O and promote the oxidation reaction. In our work, the most obvious structural change occurs in the B4C/Pd layers placed in a dry oxygen-rich environment. In this case, it is essential that numerous O2 will decompose into O with the participation of B and Pd.
- Then, dissociated oxygen replaced the carbon around boron and combined with boron. The formation of B2O3 (ΔfH° = −1194 kJ/mol) releases a larger amount of energy than B4C (ΔfH° = −71 kJ/mol) [16], indicating that boron prefers to combine with oxygen. In other B4C oxidation experiments [23], at elevated temperatures, carbon atoms will form carbon dioxide. While in our experiment, at room temperature, carbon atoms can only be in a non-excited state [17]. Thus, we could assume that the reaction product prefers boron oxide and carbon.
- Finally, if water vapor exists, B2O3 will react to form H3BO3, and then volatilize [24], leading to the reduction in the B content in the film.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shu, D.; Yun, W. Double Multilayer Monochromator Using a Modular Design for the Advanced Photon Source. Rev. Sci. Instrum. 1995, 66, 1786. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.Y.; Liu, C. Performance of a Double-Multilayer Monochromator at Beamline 2-BM at the Advanced Photon Source. Rev. Sci. Instrum. 2002, 73, 1485–1487. [Google Scholar] [CrossRef]
- Riesemeier, H.; Ecker, K. Layout and First XRF Applications of the BAM Line at BESSY II. X-ray Spectrom. 2004, 34, 160–163. [Google Scholar] [CrossRef]
- Sakurai, K.; Mizusawa, M. Fast X-ray Fluorescence Camera Combined with Wide Band Pass Monochromatic Synchrotron Beam. AIP Conf. 2004, 705, 889–892. [Google Scholar] [CrossRef]
- Tsuruta, H.; Brennan, S. A Wide-Bandpass Multilayer Monochromator for Biological Small-Angle Scattering and Fiber Diffraction Studies. J. Appl. Crystallogr. 1998, 31, 672–682. [Google Scholar] [CrossRef]
- Hexemer, A.; Bras, W. A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator. J. Phys. Conf. Ser. 2010, 247, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Narayanan, S. A Sagittally Focusing Double-Multilayer Monochromator for Ultrafast X-ray Imaging Applications. J. Synchrotron Radiat. 2007, 14, 138–143. [Google Scholar] [CrossRef]
- Rack, A.; Weitkamp, T. Comparative Study of Multilayers Used in Monochromators for Synchrotron-Based Coherent Hard X-ray Imaging. J. Synchrotron Radiat. 2010, 17, 496–510. [Google Scholar] [CrossRef]
- Rack, A.; Weitkamp, T. The Micro-Imaging Station of the TopoTomo Beamline at the ANKA Synchrotron Light Source. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 1978–1988. [Google Scholar] [CrossRef]
- Stampanoni, M.; Groso, A.; Isenegger, A. TOMCAT: A Beamline for Tomographic Microscopy and Coherent Radiology Experiments. AIP Conf. Proc. 2007, 879, 848–851. [Google Scholar] [CrossRef] [Green Version]
- Simon, R.; Buth, G. The X-ray-Fluorescence Facility at ANKA, Karlsruhe: Minimum Detection Limits and Micro Probe Capabilities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 199, 554–558. [Google Scholar] [CrossRef]
- Rack, A.; Assoufid, L. Hard X-ray Multilayer Mirror Round-Robin on the Wavefront Preservation Capabilities of W/B4C Coatings. Radiat. Phys. Chem. 2012, 81, 1696–1702. [Google Scholar] [CrossRef]
- Dietsch, R.; Rack, A. Performance of Multilayer Monochromators for Hard X-ray Imaging with Coherent Synchrotron Radiation. AIP Conf. Proc. 2011, 1365, 77. [Google Scholar] [CrossRef] [Green Version]
- Rack, A.; Riesemeier, H.; Vagovic, P. Fully Automated, Fixed Exit, in Vacuum Double-Multilayer Monochromator for Synchrotron-Based Hard X-ray Micro-Imaging Applications. AIP Conf. Proc. 2011, 1234, 740. [Google Scholar] [CrossRef]
- Hangjian, N.; Qiushi, H. Comparative Study of Pd/B4C X-ray Multilayer Mirrors Fabricated by Magnetron Sputtering with Kr and Ar Gas. Materials 2020, 13, 4504. [Google Scholar] [CrossRef]
- Morawe, C.; Supruangnet, R. Structural Modifications in Pd/B4C Multilayers for X-ray Optical Applications. Thin Solid Film. 2015, 588, 1–10. [Google Scholar] [CrossRef]
- Supruangnet, R.; Morawe, C. Chemical Modification of B4C Cap Layers on Pd/B4C Multilayers. Appl. Surf. Sci. 2016, 367, 347–353. [Google Scholar] [CrossRef]
- Qiushi, H.; Yang, L. Nitridated Ru/B4C Multilayer Mirrors with Improved Interface Structure, Zero Stress, and Enhanced Hard X-ray Reflectance. Opt. Express 2018, 26, 21803–21812. [Google Scholar] [CrossRef]
- Yang, L.; Qiushi, H. Thermal and Temporal Stability of the Nitridated Ru/B4C Multilayer for High-Flux Monochromator Application. Appl. Opt. 2020, 59, 48–53. [Google Scholar] [CrossRef]
- Windt, D.L. Reduction of Stress and Roughness by Reactive Sputtering in W/B4C X-ray Multilayer Films. Proc. SPIE Opt. Euv X-ray Gamma-ray Astron. III. Int. Soc. Opt. Photonics 2007, 6688, 66880R. [Google Scholar] [CrossRef]
- Yiwen, W.; Qiushi, H. Nitridated Pd/B4C Multilayer Mirrors for Soft X-ray Region: Internal Structure and Aging Effects. Opt. Express 2015, 25, 7749–7760. [Google Scholar] [CrossRef]
- Zehringer, R.; Künzli, H. Oxidation Behaviour of Boron Carbide. J. Nucl. Mater. 1990, 176–177, 370–374. [Google Scholar] [CrossRef]
- Li, Y.Q.; Qiu, T. Oxidation Behaviour of Boron Carbide Powder. Mater. Sci. Eng. 2007, 444, 184–191. [Google Scholar] [CrossRef]
- Viricelle, P.J.; Goursat, P. Oxidation Behaviour of a Boron Carbide Based Material in Dry and Wet Oxygen. J. Therm. Anal. Calorim. 2001, 63, 507–515. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Paul, G.B. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489. [Google Scholar] [CrossRef]
- Doan, T.T.V.; Wang, J. Theoretical Modelling and Facile Synthesis of a Highly Active Boron-Doped Palladium Catalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2016, 55, 6842–6847. [Google Scholar] [CrossRef]
- Jun, L.; Junxiang, C. Controllable Increase of Boron Content in B Pd Interstitial Nanoalloy To Boost the Oxygen Reduction Activity of Palladium. Chem. Mater. 2017, 29, 10060–10067. [Google Scholar] [CrossRef]
- Jiali, W.; Runze, Q. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B4C Coatings for X-ray Mirrors. Chin. Phys. Lett. 2019, 36, 120701. [Google Scholar] [CrossRef]
- Henderson, G.S.; De Groot, F.M.F.; Moulton, B.J.A. X-ray Absorption Near-Edge Structure (XANES) Spectroscopy. Rev. Mineral. Geochem. 2004, 78, 75–138. [Google Scholar] [CrossRef] [Green Version]
- Yanyan, Y.; Le Guen, K. X-ray Absorption Spectroscopy Study of Buried Co Layers in the Co/Mo2C Multilayer Mirrors. Surf. Interface Anal. 2017, 49, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Zhimin, L. Lithiation-Induced Amorphization of Pd3P2S8 for Highly Efficient Hydrogen Evolution. Nat. Catal. 2018, 1, 460–468. [Google Scholar] [CrossRef]
- Zhihu, S.; Qinghua, L. X-ray Absorption Fine Structure Spectroscopy in Nanomaterials. Sci. China Mater. 2015, 58, 313–341. [Google Scholar] [CrossRef] [Green Version]
- Zhiming, L.; Yunan, L. Selective Catalytic Reduction of NOx with H2 over WO3 Promoted Pt-TiO2 Catalyst. Catal. B Environ. 2016, 188, 189–197. [Google Scholar] [CrossRef]
- Wensheng, Y.; Qinghua, L. Realizing Ferromagnetic Coupling in Diluted Magnetic Semiconductor Quantum Dots. J. Am. Chem. Soc. 2014, 136, 1150–1155. [Google Scholar] [CrossRef]
- Liuyang, P.; Runze, Q. Effect of Nitrogen Doping on Surface Morphology, Microstructure, Chemical Composition and Intrinsic Stress of Nickel thin Films Deposited by Reactive Sputtering. Surf. Coat. Technol. 2019, 364, 196–203. [Google Scholar] [CrossRef]
- Kumar, S.; Infrared, A.K.R. Raman and Electronic Spectra of Alanine: A comparison with Ab Intio Calculation. J. Mol. Struct. 2006, 791, 23–29. [Google Scholar] [CrossRef]
- Li, D.; Bancrofta, G.M. B K-edge XANES of Crystalline and Amorphous Inorganic Materials. J. Electron Spectrosc. Relat. Phenom. 1996, 79, 71–73. [Google Scholar] [CrossRef]
- Jiménez, I.; Terminello, L.J. Photoemission, X-ray Absorption and X-ray Emission Study of Boron Carbides. J. Electron Spectrosc. Relat. Phenom. 1999, 101–103, 611–615. [Google Scholar] [CrossRef]
- Jiménez, I.; Sutherland, D.G.J. Photoemission and X-ray-Absorption Study of Boron Carbide and Its Surface Thermal Stability. Phys. Rev. 1998, 57, 13167–13174. [Google Scholar] [CrossRef]
- Zhang, D.; Davalle, D.M. The Chemical Composition of As-Grown and Surface Treated Amorphous Boron Carbon Thin Films by Means of NEXAFS and XPS. Surf. Sci. 2000, 461, 16–22. [Google Scholar] [CrossRef]
- Zhang, D.; Mcilroy, D.N. The Chemical and Morphological Properties of Boron–Carbon Alloys Grown by Plasma-Enhanced Chemical Vapour Deposition. J. Mater. Sci. 1998, 33, 4911–4915. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Chang, C.H. X-ray Absorption Spectroscopic Study of a Hot Pressed MgB2. Solid State Commun. 2006, 137, 97–100. [Google Scholar] [CrossRef]
- Nan, J.; John, S. High-Energy Electron Irradiation and B Coordination in Na2O-B2O3-SiO2 Glass. J. Non-Cryst. Solids 2004, 342, 12–17. [Google Scholar] [CrossRef]
- Nan, J.; Jianrong, Q. Fundamentals of High-Energy Electron-Irradiation-Induced Modifications of Silicate Glasses. Phys. Rev. 2003, 68, 064207. [Google Scholar] [CrossRef]
- Nan, J.; John, C.H.S. Interpretation of Oxygen K Pre-Edge Peak in Complex Oxides. Ultramicroscopy 2006, 106, 215–219. [Google Scholar] [CrossRef]
- Ling, H.; Wu, J.D. Electron Cyclotron Resonance Plasma-Assisted Pulsed Laser Deposition of Boron Carbon Nitride Films. Diam. Relat. Mater. 2002, 11, 1623–1628. [Google Scholar] [CrossRef]
- Bengu, E.; Genisel, M.F. Theoretical and Spectroscopic Investigations on the Structure and Bonding in B–C–N Thin Films. Thin Solid Film. 2009, 518, 1459–1464. [Google Scholar] [CrossRef]
- Laidani, N.; Anderle, M. Structural and Compositional Study of B–C–N Films Produced by Laser Ablation of B4C Targets in N2 Atmosphere. Appl. Surf. Sci. 2000, 157, 135–144. [Google Scholar] [CrossRef]
- Moddeman, W.E.; Burke, A.R. Surface Oxides of Boron and B12O2 as Determined by XPS. Surf. Interface Anal. 1989, 14, 224–232. [Google Scholar] [CrossRef]
- Yue, C.G.K.; Ging, M.N. Identification of Functional Groups and Determination of Carboxyl Formation Temperature in Graphene Oxide Using the XPS O 1s Spectrum. Thin Solid Film. 2015, 590, 40–48. [Google Scholar] [CrossRef]
- Gar, B.; Hoflund, H.; Hagelin, A.E. ELS and XPS Study of Pd/PdO Methane Oxidation Catalysts. Appl. Surf. Sci. 2003, 205, 102–112. [Google Scholar] [CrossRef]
- Gabasch, H.; Unterberger, W. In Situ XPS Study of Pd (111) Oxidation at Elevated Pressure, Part 2: Palladium Oxidation in the 10-1 mbar Range. Surf. Sci. 2006, 600, 2980–2989. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Chrisey, D.B. Short Range Order Structure of Amorphous B4C boron Carbide Thin Films. J. Mater. Sci. 2011, 46, 3952–3959. [Google Scholar] [CrossRef]
- HaiYing, C.; Jing, W. Synthesis of Boron Carbide Films by Ion Beam Sputtering. Surf. Coat. Technol. 2000, 128–129, 329–333. [Google Scholar] [CrossRef]
- Hristov, H.; Nedyalkova, M. Boron Oxide Glasses and Nanocomposites: Synthetic, Structural and Statistical Approach. J. Mater. Sci. Technol. 2017, 33, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Aoquia, S.-I.; Miyata, H. Preparation of Boron Carbide Thin Film by Pulsed KrF Excimer Laser Deposition Process. Thin Solid Film. 2002, 407, 126–131. [Google Scholar] [CrossRef]
Environments | Temperature/°C | Humidity/%rh |
---|---|---|
A: Dry nitrogen environment | 20 °C | ~25%rh |
B: Atmosphere | 20 °C | ~35%rh |
C: Dry oxygen-rich environment | 20 °C | ~25%rh |
D: Wet nitrogen environment | 20 °C | ~85%rh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Qi, R.; Jiang, L.; Huang, Q.; Li, T.; Liu, G.; Li, W.; Yan, W.; Zhang, Z.; Wang, Z. Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments. Materials 2021, 14, 1319. https://doi.org/10.3390/ma14051319
Feng Y, Qi R, Jiang L, Huang Q, Li T, Liu G, Li W, Yan W, Zhang Z, Wang Z. Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments. Materials. 2021; 14(5):1319. https://doi.org/10.3390/ma14051319
Chicago/Turabian StyleFeng, Yufei, Runze Qi, Li Jiang, Qiushi Huang, Tongzhou Li, Genchang Liu, Wenbin Li, Wensheng Yan, Zhong Zhang, and Zhanshan Wang. 2021. "Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments" Materials 14, no. 5: 1319. https://doi.org/10.3390/ma14051319
APA StyleFeng, Y., Qi, R., Jiang, L., Huang, Q., Li, T., Liu, G., Li, W., Yan, W., Zhang, Z., & Wang, Z. (2021). Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments. Materials, 14(5), 1319. https://doi.org/10.3390/ma14051319