Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers
Abstract
:1. Introduction
2. Quantum Dots-Based Optical Biosensor for Circulating Cancer Biomarkers
Sensing Mechanism | Target Biomarker | Detection Elements | Signal Elements | LOD | Reference |
---|---|---|---|---|---|
Fluorescence | CTC 1 (SK-Br3) | Anti-EpCAM antibodies | Octadecylamine-coated QDs 2 630 | 275 cells/mL | [18] |
CTC (MCF-7) | Anti-EpCAM antibodies | ZnS-coated CuInSe QDs | 12 cells/well | [28] | |
Exosomes (CAL27) | CD63 aptamers | ZnCdSe/ZnS core/shell QDs | 500 particles/μL | [22] | |
CYRFA 21-1 3, CEA 4 and NSE 5 | Target specific antibodies | 525, 585 and 625 QDs | 364 pg/mL, 38 pg/mL and 370 pg/mL | [23] | |
PET 6 | ctDNA 7 | Semi-intercalation binding with magnetic beads | Mercaptosuccinic acid stabilized CdTe QDs | 3 ng/mL | [21] |
NSET 8 | CTC (Hep G2 and A549) | EpCAM aptamers | Nitrogen and sulphur-doped graphene QDs (donors) quenched by MoS2 nanosheets (acceptors) | 1.19 nM | [19] |
FRET 9 | AFP 10 | AFP aptamers and anti-AFP antibodies | CdTe QDs (donors) quenched by AuNPs (acceptors) | 400 pg/mL | [29] |
miRNA 11-21 | Hairpin-structured oligonucleotide probes | Carbon QDs (donors) quenched by Black Hole Quencher 1 (acceptors) | 0.3 nM | [27] | |
ECL 12 | CEA | CEA antibodies | Poly(ethylenimine) functionalized graphene oxide matrix modified with carbon QDs and AuNPs | 1.67 pg/mL | [30] |
CYFRA21-1 | CYFRA21-1 antibodies | Molybdenum oxide QDs/Au NPs-chit nanocomposite | 0.3 pg/mL | [24] | |
miRNA-21 and MUC1 13 | miRNA-21 hairpin probes and MUC1 aptamers | HP2 14 modified by CdS:Mn QDs and AuNPs modified hairpin probes | 11 aM and 0.40 fg/mL | [26] | |
miRNA-21 | miRNA-21 specific hairpins | 3D CdTe QDs–DNA nanoreticulations | 34 aM | [25] |
3. Metal Nanoparticle-Based Optical Biosensor for Circulating Cancer Biomarkers
Sensing Mechanism | Target Biomarker | Detection Elements | Signal Elements | LOD | Reference |
---|---|---|---|---|---|
SPR 1 | Exosome (MCF-7) | CD63 aptamers | Au film, aptamer/T30 linked and A30 linked AuNPs 2 | 5 × 103 exosomes/mL | [34] |
miRNA 3-21 and CTC 5 (SMMC-7721) | Hairpin probes and cell-specific aptamers | Au film, DNA-linked AuNPs, and AgNPs 4 | 0.6 fM and 1 cell/µL | [44] | |
ctDNA 6 | Electrostatic interactions | Hexadecyltrimethylammonium bromide coated Au nanorods | 0.2 nM | [33] | |
Colorimetry | CTC (MDA-MB-231) | CD44 ligands | AuNPs-conjugated hyaluronic acid | N/A | [36] |
Exosome (C666-1) | Target specific antibodies | AuNP–DNA conjugates | 100 particles/mL | [45] | |
Flt-1 7 | Target specific ligand peptides | Peptide-coated AuNPs | 0.2 nM | [46] | |
miRNA-155 | Hairpin DNA probes | Citrate-capped and polyethyleneimine-capped AuNPs | 100 aM | [35] | |
ctDNA (KRAS) | Complementary linkers | DNA oligonucleotides–functionalized AuNPs | 67 pM | [37] | |
SERS 8 | CTC(HeLa and MCF-7) | Targeted specific ligand folic acid | Reductive bovine serum albumin-stabilized AuNP coated with 4-mercaptobenzoic acid | 5 cells/mL | [47] |
Exosome (SKBR3, T84, and LNCaP) | H2, CEA, and PSMA aptamers | 5,5′-dithiobis(2-nitrobenzoic acid), 2-naphthalenethiol or 7-mercapto-4-methylcoumarin labeled AuNPs | 32, 73, and 203 exosomes/µL | [48] | |
PSA 9 | Target specific antibodies | Raman label compound coated AgNPs bound to a silica core | 0.11 pg/mL | [38] | |
PSA | PSA aptamers | 4,4′-dipyridyl-labeled AuNPs | 5.0 pg/mL | [40] | |
free-PSA and complexed-PSA | Target specific antibodies | Malachite green isothiocyanate and/or X-rhodamine-5-(and-6)-isothiocyanate labeled AuNPs | 0.012 ng/mL and 0.15 ng/mL | [39] | |
MEF 10 | PSA | Target specific antibodies | Silica-coated AgNPs and RuBpy | 27 pg/mL | [42] |
CEA 11 | Target specific antibodies | Ag nanocubes and Alexa-488 | 1 ng/mL | [43] |
4. Upconversion Nanoparticle-Based Optical Biosensor for Circulating Cancer Biomarkers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Ma, K.; Bao, H.; Ma, X.; Xu, Y.; Wu, X.; Shao, Y.W.; Jiang, M.; Huang, J. Quantitative characterization of tumor cell-free DNA shortening. BMC Genom. 2020, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Muhanna, N.; Di Grappa, M.A.; Chan, H.H.L.; Khan, T.; Jin, C.S.; Zheng, Y.; Irish, J.C.; Bratman, S.V. Cell-Free DNA Kinetics in a Pre-Clinical Model of Head and Neck Cancer. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenet. 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Jing, C.; Wu, J.; Ni, J.; Sha, H.; Xu, X.; Du, Y.; Lou, R.; Dong, S.; Feng, J. Circulating tumor DNA detection: A potential tool for colorectal cancer management (Review). Oncol. Lett. 2018, 17, 1409–1416. [Google Scholar] [CrossRef] [Green Version]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009, 67, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front. Genet. 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Huuskonen, J.; Hajivandi, M.; Manzanedo, R.; Predki, P.; Amshey, J.R.; Pope, R.M. Identification and quantification of proteins differentially secreted by a pair of normal and malignant breast-cancer cell lines. Proteomics 2009, 9, 182–193. [Google Scholar] [CrossRef]
- Mor, G.; Visintin, I.; Lai, Y.; Zhao, H.; Schwartz, P.; Rutherford, T.; Yue, L.; Bray-Ward, P.; Ward, D.C. Serum protein markers for early detection of ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 7677–7682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Deng, C.-X. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int. J. Biol. Sci. 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 2020, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Micalizzi, D.S.; Maheswaran, S.; Haber, D.A. A conduit to metastasis: Circulating tumor cell biology. Genes Dev. 2017, 31, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lee, C. The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. Plant Pathol. J. 2018, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xu, J.; Wang, X.; Wu, D.; Chen, Z.G.; Wang, A.Y. Quantum Dot-Based, Quantitative, and Multiplexed Assay for Tissue Staining. ACS Appl. Mater. Interfaces 2013, 5, 2901–2907. [Google Scholar] [CrossRef]
- Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications and toxicity. Nanoscale Res. Lett. 2012, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- De la Calle, I.; Romero-Rivas, V. Chapter 9—The Role of Nanomaterials in Analytical Chemistry: Trace Metal Analysis. In Applications of Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead: Sawston, UK, 2018; pp. 251–301. [Google Scholar]
- Schiffman, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem. 2018, 258, 1191–1214. [Google Scholar]
- Seong-Min, J.; Jo, S.-M.; Kim, H.-S. Efficient Capture and Simple Quantification of Circulating Tumor Cells using Quantum Dots and Magnetic Beads. Small 2015, 11, 2536–2542. [Google Scholar] [CrossRef]
- Cui, F.; Ji, J.; Sun, J.; Wang, J.; Wang, H.; Zhang, Y.; Ding, H.; Lu, Y.; Xu, D.; Sun, X. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Anal. Bioanal. Chem. 2019, 411, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.W.; Chueh, D.-Y.; Chen, P. Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots. J. Nanobiotechnol. 2019, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejdl, L.; Zelnickova, J.; Vaneckova, T.; Hynek, D.; Adam, V.; Vaculovicova, M. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. New J. Chem. 2018, 42, 6005–6012. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Z.; Xie, Q.; Xiao, B.; Zhou, G.; Chen, G.; Bian, Z. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens. Bioelectron. 2021, 171, 112733. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, L.; Li, G.; Jing, F.; Mao, H.; Jin, Q.; Zhai, W.; Zhang, H.; Zhao, J.; Jia, C. Multiplexed detection of lung cancer biomarkers based on quantum dots and microbeads. Talanta 2016, 156, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, X.; Wu, W.; Zheng, W.; Deng, H.; Xu, L.; Chen, W.; Li, Z.; Peng, H. Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots. Microchim. Acta 2019, 186, 855. [Google Scholar] [CrossRef] [PubMed]
- Mahani, M.; Mousapour, Z.; Divsar, F.; Nomani, A.; Ju, H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim. Acta 2019, 186, 132. [Google Scholar] [CrossRef]
- Sun, M.-F.; Liu, J.-L.; Chai, Y.-Q.; Zhang, J.; Tang, Y.; Yuan, R. Three-Dimensional Cadmium Telluride Quantum Dots—DNA Nanoreticulation as a Highly Efficient Electrochemiluminescent Emitter for Ultrasensitive Detection of MicroRNA from Cancer Cells. Anal. Chem. 2019, 91, 7765–7773. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Bi, Y.; Sun, M.; Bai, J.; Zhou, M. Ultrasensitive electrochemiluminescence biosensing platform for miRNA-21 and MUC1 detection based on dual catalytic hairpin assembly. Anal. Chim. Acta 2020, 1105, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Tu, D.; Hu, P.; Song, X.; Gong, Z.; Chen, T.; Song, J.; Chen, Z.; Chen, X. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today 2020, 35, 100943. [Google Scholar] [CrossRef]
- Zhou, L.; Ji, F.; Zhang, T.; Wang, F.; Li, Y.; Yu, Z.; Jin, X.; Ruan, B. An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 2019, 197, 444–450. [Google Scholar] [CrossRef]
- Li, N.-L.; Jia, L.-P.; Ma, R.-N.; Jia, W.-L.; Lu, Y.-Y.; Shi, S.-S.; Wang, H.-S. A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification. Biosens. Bioelectron. 2017, 89, 453–460. [Google Scholar] [CrossRef]
- Gao, M.-L.; He, F.; Yin, B.-C.; Ye, B.-C. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst 2019, 144, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. In Situ Formation of Gold Nanoparticles Decorated Ti3C2 MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and their Surface Proteins. Anal. Chem. 2020, 92, 5546–5553. [Google Scholar] [CrossRef]
- Pallares, R.M.; Kong, S.L.; Ru, T.H.; Thanh, N.T.K.; Lu, Y.; Su, X. A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chem. Commun. 2015, 51, 14524–14527. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, L.; Yang, X.; Liu, X.; Nie, W.; Zheng, Y.; Cheng, Q.; Wang, K. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens. Bioelectron. 2019, 135, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Hakimian, F.; Ghourchian, H.; Hashemi, A.S.; Arastoo, M.R.; Rad, M.B. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauta, P.R.; Hallur, P.M.; Chaubey, A. Gold nanoparticle-based rapid detection and isolation of cells using ligand-receptor chemistry. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, S.L.; Di Su, X. A centrifugation-assisted visual detection of SNP in circulating tumor DNA using gold nanoparticles coupled with isothermal amplification. RSC Adv. 2020, 10, 1476–1483. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Kang, H.; Ko, E.; Jun, B.-H.; Lee, H.-Y.; Lee, Y.-S.; Jeong, D.H. PSA Detection with Femtomolar Sensitivity and a Broad Dynamic Range using SERS Nanoprobes and an Area-Scanning Method. ACS Sens. 2016, 1, 645–649. [Google Scholar] [CrossRef]
- Cheng, Z.; Choi, N.; Wang, R.; Lee, S.; Moon, K.C.; Yoon, S.-Y.; Chen, L.; Choo, J. Simultaneous Detection of Dual Prostate Specific Antigens using Surface-Enhanced Raman Scattering-Based Immunoassay for Accurate Diagnosis of Prostate Cancer. ACS Nano 2017, 11, 4926–4933. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Hu, Y.; Dong, N.; Zhu, G.; Zhu, T.; Jiang, N. A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens. Bioelectron. 2017, 94, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef]
- Xu, D.-D.; Deng, Y.-L.; Li, C.-Y.; Lin, Y.; Tang, H.-W. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens. Bioelectron. 2017, 87, 881–887. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Bhethanabotla, V.R. Integrating Metal-Enhanced Fluorescence and Surface Acoustic Waves for Sensitive and Rapid Quantification of Cancer Biomarkers from Real Matrices. ACS Sens. 2018, 3, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Wang, Q.; Li, Q.; Yang, X.; Wang, K.; Nie, W. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron. 2017, 87, 433–438. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Wu, Y.; Xing, S.; Lai, Y.; Zhang, G. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens. Bioelectron. 2018, 102, 204–210. [Google Scholar] [CrossRef]
- Wei, L.; Wang, X.; Li, C.; Li, X.; Yin, Y.; Li, G. Colorimetric assay for protein detection based on “nano-pumpkin” induced aggregation of peptide-decorated gold nanoparticles. Biosens. Bioelectron. 2015, 71, 348–352. [Google Scholar] [CrossRef]
- Wu, X.; Luo, L.; Yang, S.; Ma, X.; Li, Y.; Dong, C.; Tian, Y.; Zhang, L.; Shen, Z.; Wu, A. Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood. ACS Appl. Mater. Interfaces 2015, 7, 9965–9971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zong, S.; Wang, Y.; Li, N.; Li, L.; Lu, J.; Wang, Z.; Chen, B.; Cui, Y. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 2018, 10, 9053–9062. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Song, X.; Lei, W.; He, C.; You, W.; Lin, Q.; Zhou, S.; Chen, X.; Chen, Z. Direct Detection of Circulating Tumor Cells in Whole Blood using Time-Resolved Luminescent Lanthanide Nanoprobes. Angew. Chem. 2019, 131, 12323–12327. [Google Scholar] [CrossRef]
- Bartosik, P.B.; Fitzgerald, J.E.; El Khatib, M.; Yaseen, M.A.; Vinogradov, S.A.; Niedre, M. Prospects for the use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. Int. J. Nanomed. 2020, 15, 1709–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farka, Z.; Mickert, M.J.; Hlaváček, A.; Skládal, P.; Gorris, H.H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017, 89, 11825–11830. [Google Scholar] [CrossRef]
- Lan, J.; Li, L.; Liu, Y.; Yan, L.; Li, C.; Chen, J.; Chen, X. Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Microchim. Acta 2016, 183, 3201–3208. [Google Scholar] [CrossRef]
- Gu, T.; Li, Z.; Ren, Z.; Li, X.; Han, G. Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection. Chem. Eng. J. 2019, 374, 863–869. [Google Scholar] [CrossRef]
- Chen, X.; Lan, J.; Liu, Y.; Li, L.; Chunyan, L.; Xiaosong, C.; Wu, F.; Li, C.; Li, S.; Chen, J. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens. Bioelectron. 2018, 102, 582–588. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, D.; Fang, Y.; Wu, W.; Wang, Y.; Xia, Y.; Wu, F.; Li, C.; Lan, J.; Chen, J. An aptasensor based on upconversion nanoparticles as LRET donors for the detection of exosomes. Sens. Actuators B Chem. 2019, 298, 126900. [Google Scholar] [CrossRef]
- Wang, J.; Hua, G.; Li, L.; Li, D.; Wang, F.; Wu, J.; Ye, Z.; Zhou, X.; Ye, S.-F.; Danyang, L.; et al. Upconversion nanoparticle and gold nanocage satellite assemblies for sensitive ctDNA detection in serum. Analyst 2020, 145, 5553–5562. [Google Scholar] [CrossRef]
- Alonso-Cristobal, P.; Vilela, P.; El-Sagheer, A.; Lopez-Cabarcos, E.; Brown, T.; Muskens, O.L.; Rubio-Retama, J.; Kanaras, A.G. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide. ACS Appl. Mater. Interfaces 2015, 7, 12422–12429. [Google Scholar] [CrossRef]
- Vilela, P.; El-Sagheer, A.; Millar, T.M.; Brown, T.; Muskens, O.L.; Kanaras, A.G. Graphene Oxide-Upconversion Nanoparticle Based Optical Sensors for Targeted Detection of mRNA Biomarkers Present in Alzheimer’s Disease and Prostate Cancer. ACS Sens. 2017, 2, 52–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, Y.; Deng, H.; Xiong, X.; Zhang, H.; Liang, T.; Li, C. An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchem. J. 2021, 161, 105761. [Google Scholar] [CrossRef]
- Liu, J.; Xu, S.; Sun, L.; Hu, S.; Sun, J.; Liu, M.; Ma, C.; Liu, H.; Wang, Z.; Yang, Y.; et al. Up-conversion fluorescence biosensor for sensitive detection of CA-125 tumor markers. J. Rare Earths 2019, 37, 943–948. [Google Scholar] [CrossRef]
- Li, X.; Wei, L.; Pan, L.; Yi, Z.; Wang, X.; Ye, Z.; Xiao, L.; Li, H.-W.; Wang, J. Homogeneous Immunosorbent Assay Based on Single-Particle Enumeration using Upconversion Nanoparticles for the Sensitive Detection of Cancer Biomarkers. Anal. Chem. 2018, 90, 4807–4814. [Google Scholar] [CrossRef]
- Hu, S.; Xu, H.; Zhou, B.; Xu, S.; Shen, B.; Dong, B.; Yin, Z.; Xu, S.; Sun, L.; Lv, J.; et al. Double Stopband Bilayer Photonic Crystal Based Upconversion Fluorescence PSA Sensor. Sens. Actuators B Chem. 2021, 326, 128816. [Google Scholar] [CrossRef]
- Xu, S.; Dong, B.; Zhou, N.; Yin, Z.; Cui, S.; Xu, W.; Chen, B.; Song, H. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Sci. Rep. 2016, 6, 23406. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wei, Z.; Luo, X.; Wan, Q.; Qiu, R.; Wang, S. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta 2019, 195, 33–39. [Google Scholar] [CrossRef] [PubMed]
Sensing Mechanism | Target Biomarker | Recognition Elements | Signal Elements | LOD | Reference |
---|---|---|---|---|---|
Fluorescence | CTC 1 (MCF-7) | Anti-EpCAM antibodies | NaEuF4 UCNPs 2 | ≥10 cells/mL | [53] |
VEGF 3 | Target specific aptamers | α-NaYF4:Yb3+, Er3+ UCNPs | 6 pM | [55] | |
PSA 4 | Anti-PSA antibodies | β-NaYF4:18 mol % Yb3+, 2 mol % Er3+ UCNPs | 42 fM | [52] | |
miRNA 5-195 and miRNA-21 | oligonucleotide probes | CaF2: RE3+ upconversion nanocrystals doped with Ho3+, Tm3+ or Yb3+ | 100 nM | [54] | |
FRET 6 | Exosome (MDA-MB-231 and MCF-7) | EpCAM aptamer | NaYF4:Yb,Er UCNPs (donors) and Tetramethyl rhodamine (acceptors) | 80 particles/µL | [57] |
Exosome (HepG2) | CD63 aptamer | NaYF4:Yb, Er UCNPs (donors) and Au nanorods (acceptors) | 1.1 × 103 particles/µL | [56] | |
CA125 | CA125 aptamer | Polyacrylic acid coated NaYF4:Yb,Er UCNPs (donors) and carbon dots (acceptors) | 9 × 10−3 U/mL | [61] | |
CA125 | Anti-CA125 antibodies | PEI coated NaYF4:Yb,Tm UCNPs (donors) and AgNPs 7 (acceptors) | 120 pg/mL | [62] | |
PSA | Anti-PSA antibodies | NaYF4:Yb3+, Er3+ UCNPs (donors) and AuNPs 8 (acceptors) | 2.3 pM | [63] | |
PSA | Anti-PSA antibodies | NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Er3+@NaYF4:Yb3+,Nd3+ (donors) and AuNPs (acceptors) | 0.01 ng/mL | [64] | |
CEA 9 | Anti-CEA antibodies | NaYF4:Yb,Tm UCNPs (donors) and Fluorescein (acceptor) | 0.89 ng/mL | [65] | |
CEA | CEA aptamer | UCNPs (donors) and graphene oxide (acceptors) | 7.9 pg/mL | [66] | |
PCA3 miRNA | Oligonucleotide probes | NaYF4:Yb,Er UCNPs (donors) and graphene oxide (acceptors) | 500 fM | [60] | |
ctDNA 10 (KRAS) | Oligonucleotide probes | NaYF4:Yb:Tm UCNPs (donors) and Au nanocages (acceptors) | 6.30 pM | [58] | |
Single strand DNA | Oligonucleotide probes | SiO2 coated NaYF4:Yb,Er UCNPs, (donors) and graphene oxide (acceptors) | 5 pM | [59] |
Nanoparticle Type | Advantages | Disadvantages |
---|---|---|
Metal nanoparticles | Multiple shapes Conductivity Localized surface plasmon resonance Good biological affinity Good energy acceptor | No fluorescence |
Quantum Dots | High quantum yield Broadband excitation Multiplexing Size-tunable fluorescence High photobleaching threshold | Toxicity Blinking effect |
Upconversion nanoparticles | Anti-Stokes luminescent Autofluorescence inhibition Multiplexing High chemical stability Deep tissue penetration Dopants-tunable fluorescence | Toxicity Restricted Quantum Yield |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amri, C.; Shukla, A.K.; Lee, J.-H. Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers. Materials 2021, 14, 1339. https://doi.org/10.3390/ma14061339
Amri C, Shukla AK, Lee J-H. Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers. Materials. 2021; 14(6):1339. https://doi.org/10.3390/ma14061339
Chicago/Turabian StyleAmri, Chaima, Arvind Kumar Shukla, and Jin-Ho Lee. 2021. "Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers" Materials 14, no. 6: 1339. https://doi.org/10.3390/ma14061339
APA StyleAmri, C., Shukla, A. K., & Lee, J. -H. (2021). Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers. Materials, 14(6), 1339. https://doi.org/10.3390/ma14061339