Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Coatings with CaCO3 NPs
2.2.1. Preparation of Coatings: Modification of Glass Surfaces with ATRP Initiator
2.2.2. Polymerization of POEGMA Brushes (Surface-Initiated Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization (SI-ARGET ATRP))
2.2.3. Incorporation of CaCO3 NPs into Grafted Polymer Brushes
2.3. Characterization of Coatings
2.3.1. ToF-SIMS Analysis
2.3.2. XPS Analysis
2.3.3. Water Contact Angle Measurements (CA)
2.3.4. Atomic Force Microscopy (AFM)
2.3.5. Ellipsometry
2.4. Cell Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fabrication and Characterization of the POEGMA-Grafted Brush Coatings with Embedded CaCO3 NPs (ToF-SIMS, XPS, Ellipsometry, CA, SEM, AFM)
3.2. Impact of the POEGMA Coatings with a Low Concentration of Embedded CaCO3 Nanoparticles on Behavior of the Cellular Lines
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Si, Y.; Guo, Z. Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Yuen, A.; Li, A.; Zhang, Y.; Chen, T.; Yu, B.; Lee, E.; Peng, S.; Yang, W.; Lu, H.; et al. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 2020, 381. [Google Scholar] [CrossRef]
- Hoffmann, R.; Strodtmann, L.; Thiel, K.; Sloboda, L.; Urbaniak, T.; Hubley, A. Highly porous nanocoatings tailored for inverse nanoparticle-polymer composites. Nano Select 2020. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Harhay, K.; Gajos, K.; Melnyk, Y.; Dąbczyński, P.; Shevtsova, T.; Budkowski, A. Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: Synthesis, properties, and applications. Colloid Polym. Sci. 2020, 189, 1–21. [Google Scholar] [CrossRef]
- Pinchasik, B.; Tauer, K.; Möhwald, H.; Skirtach, A. Polymer brush gradients by adjusting the functional density through temperature gradient. Adv. Mater. Interfaces 2014, 1. [Google Scholar] [CrossRef]
- Uhlmann, P.; Ionov, L.; Houbenov, N.; Nitschke, M.; Grundke, K.; Motornov, M.; Minko, S.; Stamm, M. Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes. Prog. Org. Coat. 2006, 55, 168–174. [Google Scholar] [CrossRef]
- Vyas, M.; Schneider, K.; Nandan, B.; Stamm, M. Switching of friction by binary polymer brushes. Soft Matter 2008, 4, 1024–1032. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Stetsyshyn, Y. Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. 2018, 8, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Emanet, M.; Şen, Ö.; Çulha, M. Evaluation of boron nitride nanotubes and hexagonal boron nitrides as nanocarriers for cancer drugs. Nanomedicine 2017, 12, 797–810. [Google Scholar] [CrossRef]
- Boncel, S.; Müller, K.; Skepper, J.; Walczak, K.; Koziol, K. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials 2011, 32, 7677–7686. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Nguyen, K.; West, J. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, 4307–4314. [Google Scholar] [CrossRef]
- Saveleva, M.; Eftekhari, K.; Abalymov, A.; Douglas, T.; Volodkin, D.; Parakhonskiy, B.; Skirtach, A. Hierarchy of hybrid materials—The place of inorganics-in-organics in it, their composition and applications. Front. Chem. 2019, 7, 179–200. [Google Scholar] [CrossRef] [Green Version]
- Parakhonskiy, B.; Parak, W.; Volodkin, D.; Skirtach, A. Hybrids of polymeric capsules, lipids, and nanoparticles: Thermodynamics and temperature rise at the nanoscale and emerging applications. Langmuir 2019, 35, 8574–8583. [Google Scholar] [CrossRef] [Green Version]
- Senchukova, M. A brief review about the role of nanomaterials, mineral-organic nanoparticles, and extra-bone calcification in promoting carcinogenesis and tumor progression. Biomedicines 2019, 7, 65–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, X.; Yang, B.; Zhang, Y.; Wei, Y. A new class of red fluorescent organic nanoparticles: Noncovalent fabrication and cell imaging applications. ACS Appl. Mater. Interfaces 2014, 6, 3600–3606. [Google Scholar] [CrossRef]
- Masuhara, H. Single Organic Nanoparticles; Masuhara, H., Nakanishi, H., Sasaki, K., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Nie, Z.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25. [Google Scholar] [CrossRef]
- Altavilla, C. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives; Altavilla, C., Ciliberto, E., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Maleki, S.; Barzegar-Jalali, M.; Zarrintan, M.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles; potential applications in bone and tooth disorders. Pharm. Sci. 2015, 20, 175–182. [Google Scholar]
- Qian, W.; Sun, D.; Zhu, R.; Du, X.; Liu, H.; Wang, S. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int. J. Nanomed. 2012, 7, 5781–5792. [Google Scholar]
- Fakhrullin, R.; Bikmullin, A.; Nurgaliev, D. Magnetically responsive calcium carbonate microcrystals. ACS Appl. Mater. Interfaces 2009, 1, 1847–1851. [Google Scholar] [CrossRef]
- Vikulina, A.; Webster, J.; Voronin, D.; Ivanov, E.; Fakhrullin, R.; Vinokurov, V.; Volodkin, D. Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From Submicron to Giant. Mater. Des. 2021, 197. [Google Scholar] [CrossRef]
- Alves, L.; Ballesteros, B.; Boronat, M.; Cabrero-Antonino, J.; Concepción, P.; Corma, A.; Correa-Duarte, M.; Mendoza, E. Synthesis and stabilization of subnanometric gold oxide nanoparticles on multiwalled carbon nanotubes and their catalytic activity. J. Am. Chem. Soc. 2011, 133, 10251–10261. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour-Mashkani, S.; Ramezani, M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater. Lett. 2014, 130, 259–262. [Google Scholar] [CrossRef]
- Kuzma, A.; Weis, M.; Flickyngerova, S.; Jakabovic, J.; Satka, A.; Dobrocka, E.; Chlpik, J.; Cirak, J.; Donoval, M.; Telek, P.; et al. Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732. [Google Scholar] [CrossRef]
- Popov, V. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.; Della Rocca, J.; Huxford, R.; Lin, W. Hybrid nanomaterials for biomedical applications. Chem. Commun. 2010, 46, 5832–5849. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S. Chitosan composites for bone tissue engineering—An overview. Mar. Drugs 2010, 8, 2252–2266. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.; Domingues, S.; Viana, D.; Tebaldi, M. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother. 2020, 131. [Google Scholar] [CrossRef]
- Fakhrullin, R.; Brandy, M.; Cayre, O.; Velev, O.; Paunov, V. Live celloidosome structures based on the assembly of individual cells by colloid interactions. Phys. Chem. Chem. Phys. 2010, 12, 11912–11922. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Zhao, G.; Wang, X.; Yu, S. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C 2010, 114, 12948–12954. [Google Scholar] [CrossRef]
- Douglas, T.; Łapa, A.; Reczyńska, K.; Krok-Borkowicz, M.; Pietryga, K.; Samal, S.; Declercq, H.; Schaubroeck, D.; Boone, M.; Van der Voort, P.; et al. Novel injectable, self-gelling hydrogel–microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomed. Mater. 2016, 11. [Google Scholar] [CrossRef]
- Saveleva, M.; Ivanov, A.; Kurtukova, M.; Atkin, V.; Ivanova, A.; Lyubun, G.; Martyukova, A.; Cherevko, E.; Sargsyan, A.; Fedonnikov, A.; et al. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Mater. Sci. Eng. C 2018, 85, 57–67. [Google Scholar] [CrossRef]
- Chernozem, R.; Surmeneva, M.; Shkarina, S.; Loza, K.; Epple, M.; Ulbricht, M.; Cecilia, A.; Krause, B.; Baumbach, T.; Abalymov, A.; et al. Piezoelectric 3-D fibrous poly (3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering: Inorganic phase formation, osteoblast cell adhesion, and proliferation. ACS Appl. Mater. Interfaces 2019, 11, 19522–19533. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Liu, X.; Zhang, R.; Feng, Q. In Vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Liu, Y.; Yan, W.; Hu, Q.; Tao, J.; Zhang, M.; Shi, Z.; Tang, R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007, 17, 3780–3787. [Google Scholar] [CrossRef]
- Li, Q.; Li, M.; Zhu, P.; Wei, S. In Vitro synthesis of bioactive hydroxyapatite using sodium hyaluronate as a template. J. Mater. Chem. 2012, 22, 20257–20265. [Google Scholar] [CrossRef]
- Levingstone, T.; Herbaj, S.; Redmond, J.; McCarthy, H.; Dunne, N. Calcium phosphate nanoparticles-based systems for RNAi delivery: Applications in bone tissue regeneration. Nanomaterials 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef] [Green Version]
- Stetsyshyn, Y.; Fornal, K.; Raczkowska, J.; Zemla, J.; Kostruba, A.; Ohar, H.; Ohar, M.; Donchak, V.; Harhay, K.; Awsiuk, K.; et al. Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. J. Colloid Interface Sci. 2013, 411, 247–256. [Google Scholar] [CrossRef]
- Pop-Georgievski, O.; Rodriguez-Emmenegger, C.; de los Santos Pereira, A.; Proks, V.; Brynda, E.; Rypáček, F. Biomimetic non-fouling surfaces: Extending the concepts. J. Mater. Chem. B 2013, 1, 2859–2867. [Google Scholar] [CrossRef]
- Yang, W.; Xue, H.; Li, W.; Zhang, J.; Jiang, S. Pursuing “zero” protein adsorption of poly (carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009, 25, 11911–11916. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Li, D.; Yuan, L.; Zhou, F.; Wang, Y.; Song, B.; Wu, Z.; Chen, H.; Brash, J. Cell adhesion on a POEGMA-modified topographical surface. Langmuir 2012, 28, 17011–17018. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Lin, L.; Messersmith, P. Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length. Biomacromolecules 2006, 7, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Nastyshyn, S.; Raczkowska, J.; Stetsyshyn, Y.; Orzechowska, B.; Bernasik, A.; Shymborska, Y.; Brzychczy-Włoch, M.; Gosiewski, T.; Lishchynskyi, O.; Ohar, H.; et al. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv. 2020, 10, 10155–10166. [Google Scholar] [CrossRef]
- Tang, Z.; Okano, T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regener. Biomater. 2014, 1, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Uhlig, K.; Wischerhoff, E.; Lutz, J.; Laschewsky, A.; Jaeger, M.; Lankenau, A.; Duschl, C. Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy. Soft Matter 2010, 6, 4262–4267. [Google Scholar] [CrossRef]
- He, L.; Zhang, Y.; Ren, L.; Chen, Y.; Wei, H.; Wang, D. Double-Hydrophilic Polymer Brushes: Synthesis and Application for Crystallization Modification of Calcium Carbonate. Macromol. Chem. Phys. 2006, 207, 684–693. [Google Scholar] [CrossRef]
- Guillemet, B.; Faatz, M.; Gröhn, F.; Wegner, G.; Gnanou, Y. Nanosized amorphous calcium carbonate stabilized by poly (ethylene oxide)-b-poly (acrylic acid) block copolymers. Langmuir 2006, 22, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Antonietti, M.; Cölfen, H.; Fang, Y. Uniform hexagonal plates of vaterite CaCO3mesocrystals formed by biomimetic mineralization. Adv. Funct. Mater. 2006, 16, 903–908. [Google Scholar] [CrossRef]
- Cölfen, H.; Antonietti, M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 1998, 14, 582–589. [Google Scholar] [CrossRef]
- Yu, S.; Cölfen, H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 2004, 14, 2124–2147. [Google Scholar] [CrossRef]
- Cölfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 2001, 7, 106–116. [Google Scholar] [CrossRef]
- Sedlák, M.; Antonietti, M.; Cölfen, H. Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals. Macromol. Chem. Phys. 1998, 199, 247–254. [Google Scholar] [CrossRef]
- Saveleva, M.; Prikhozhdenko, E.; Gorin, D.; Skirtach, A.; Yashchenok, A.; Parakhonskiy, B. Polycaprolactone-based, porous CaCO3 and Ag nanoparticle modified scaffolds as a SERS platform with molecule-specific adsorption. Front. Chem. 2020, 7, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Bayat, H.; Alhmoud, H.; Raoufi, M.; Voelcker, N.; Schönherr, H. Geometrical Constraints of Poly (diethylene glycol methyl ether methacrylate) Brushes on Spherical Nanoparticles and Cylindrical Nanowires: Implications for Thermoresponsive Brushes on Nanoobjects. ACS Appl. Nano Mater. 2020, 3, 3693–3705. [Google Scholar] [CrossRef]
- Rafati, A.; Shard, A.; Castner, D. Multitechnique characterization of oligo(ethylene glycol) functionalized gold nanoparticles. Biointerphases 2016, 11. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Bernasik, A.; Kostruba, A.; Harhay, K.; Ohar, H.; Marzec, M.; Budkowski, A. Temperature-controlled three-stage switching of wetting, morphology, and protein adsorption. ACS Appl. Mater. Interfaces 2017, 9, 12035–12045. [Google Scholar] [CrossRef] [PubMed]
- XPS Data Base. Available online: http://www.xpsfitting.com (accessed on 29 December 2020).
- Parakhonskiy, B.; Yashchenok, A.; Donatan, S.; Volodkin, D.; Tessarolo, F.; Antolini, R.; Mçhwald, H.; Skirtach, A. Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers. ChemPhysChem 2014, 15, 2817–2822. [Google Scholar] [CrossRef]
- Feoktistova, N.; Vikulina, A.; Balabushevich, N.; Skirtach, A.; Volodkin, D. Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis. Mater. Des. 2020, 185. [Google Scholar] [CrossRef]
- Walsh, D.; Lebeau, B.; Mann, S. Morphosynthesis of calcium carbonate (vaterite) microsponges. Adv. Mater. 1999, 11, 324–328. [Google Scholar] [CrossRef]
- Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Brzychczy-Włoch, M.; Gosiewski, T.; Jany, B.; Lishchynskyi, O.; Shymborska, Y.; Nastyshyn, S.; Bernasik, A.; et al. “Command” surfaces with thermo-switchable antibacterial activity. Mater. Sci. Eng. C 2019, 103. [Google Scholar] [CrossRef]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [Green Version]
- Hinkley, G.; Carpinone, P.; Munson, J.; Powers, K.; Roberts, S. Oral absorption of PEG-coated versus uncoated gold nanospheres: Does agglomeration matter? Part. FibreToxicol. 2015, 12, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Wang, Q.; Zhang, J.; Zhao, W.; Zhao, C. Substrate-independent Ag-nanoparticle-loaded hydrogel coating with regenerable bactericidal and thermoresponsive antibacterial properties. ACS Appl. Mater. Interfaces 2017, 9, 44782–44791. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511–37523. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, S.; Song, L.; Shi, H.; Yang, H.; Luan, S.; Huang, Y.; Yin, J.; Khan, A.; Zhao, J. Temperature-responsive hierarchical polymer brushes switching from bactericidal to cell repellency. ACS Appl. Mater. Interfaces 2017, 9, 40930–40939. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, G.; Jiang, Y.; Zhang, Y.; Zou, J.; Wang, L.; Zhang, X. Silver–zwitterion organic–inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir 2013, 29, 3773–3779. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, G.; Stansbury, J.; Zhu, X.; Wang, X.; Nie, J. Smart antibacterial surface made by photopolymerization. ACS Appl. Mater. Interfaces 2016, 8, 28047–28054. [Google Scholar] [CrossRef]
- Ren, X.; Wu, Y.; Cheng, Y.; Ma, H.; Wei, S. Fibronectin and bone morphogenetic protein-2-decorated poly (OEGMA-r-HEMA) brushes promote osseointegration of titanium surfaces. Langmuir 2011, 27, 12069–12073. [Google Scholar] [CrossRef]
- Raynor, J.; Petrie, T.; García, A.; Collard, D. Controlling cell adhesion to titanium: Functionalization of poly [oligo (ethylene glycol) methacrylate] brushes with cell-adhesive peptides. Adv. Mater. 2007, 19, 1724–1728. [Google Scholar] [CrossRef]
- Letsche, S.; Steinbach, A.; Pluntke, M.; Marti, O.; Ignatius, A.; Volkmer, D. Usage of polymer brushes as substrates of bone cells. Front. Mater. Sci. China 2009, 3, 132–144. [Google Scholar] [CrossRef]
- Parakhonskiy, B.; Zyuzin, M.; Yashchenok, A.; Carregal-Romero, S.; Rejman, J.; Möhwald, H.; Parak, W.; Skirtach, A. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J. Nanobiotechnol. 2015, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kamba, A.; Ismail, M.; Ibrahim, T.; Zakaria, Z. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on NIH 3T3 fibroblast cell line. Afr. J. Tradit. Complementary Altern. Med. 2014, 11, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, S.; Xu, G.; Guo, Y.; Fu, J.; Zhang, D. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells. Int. J. Nanomed. 2014, 9, 265–271. [Google Scholar] [CrossRef] [Green Version]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abalymov, A.; Parakhonskiy, B.; Skirtach, A. Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids Surf. A 2020, 603. [Google Scholar] [CrossRef]
- Wu, J.; Deng, Y.; Liu, Q.; Yu, J.; Liu, Y.; He, Z.; Guan, X. Induction of apoptosis and autophagy by calcifying nanoparticles in human bladder cancer cells. Tumor Biol. 2017, 39, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Lee, J.; Jo, M.; Kim, M.; Kim, H.; Oh, J.; Song, N.; Choi, S. Cytotoxicity, uptake behaviors, and oral absorption of food grade calcium carbonate nanomaterials. Nanomaterials 2015, 5, 1938–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamba, A.; Ismail, M.; Ibrahim, T.; Zakaria, Z.; Gusau, L. In vitro ultrastructural changes of MCF-7 for metastasise bone cancer and induction of apoptosis via mitochondrial cytochrome C released by CaCO3/Dox nanocrystals. BioMed Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Luzon, M.; Boyer, C.; Peinado, C.; Corrales, T.; Whittaker, M.; Tao, L.; Davis, T. Water-soluble, thermoresponsive, hyperbranched copolymers based on PEG-methacrylates: Synthesis, characterization, and LCST behavior. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2783–2792. [Google Scholar] [CrossRef]
- Laloyaux, X.; Fautré, E.; Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Jonas, A.; Glinel, K. Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv. Mater. 2010, 22, 5024–5028. [Google Scholar] [CrossRef] [PubMed]
Coating | Type of the Bond | BE (eV) | INT (%) |
---|---|---|---|
POEGMA with CaCO3 | C–C | 284.8 | 71 |
C–O (C–N) | 286.5 | 19 | |
O–C=O (C=O) | 288.5 | 10 | |
POEGMA [52] | C–C | 284.8 | 72 |
C–O (C–N) | 286.4 | 21 | |
O–C=O (C=O) | 288.4 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lishchynskyi, O.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Orzechowska, B.; Abalymov, A.; Skirtach, A.G.; Bernasik, A.; Nastyshyn, S.; Budkowski, A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials 2021, 14, 1417. https://doi.org/10.3390/ma14061417
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials. 2021; 14(6):1417. https://doi.org/10.3390/ma14061417
Chicago/Turabian StyleLishchynskyi, Ostap, Yurij Stetsyshyn, Joanna Raczkowska, Kamil Awsiuk, Barbara Orzechowska, Anatolii Abalymov, Andre G. Skirtach, Andrzej Bernasik, Svyatoslav Nastyshyn, and Andrzej Budkowski. 2021. "Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines" Materials 14, no. 6: 1417. https://doi.org/10.3390/ma14061417
APA StyleLishchynskyi, O., Stetsyshyn, Y., Raczkowska, J., Awsiuk, K., Orzechowska, B., Abalymov, A., Skirtach, A. G., Bernasik, A., Nastyshyn, S., & Budkowski, A. (2021). Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials, 14(6), 1417. https://doi.org/10.3390/ma14061417