Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Synthesis by Sol-Gel Method
2.2. Hydrogel Formulations and Morphological Characterization
2.3. Differential Scanning Calorimetry (DSC)
2.4. Rheological Characterization
2.5. Cell Culture
2.6. Conditioned Medium Preparation
2.7. Cytotoxicity Assay
3. Results
3.1. Physico-Chemical Characterization of Injectable Systems
3.2. Biological Characterization of Injectable Systems on the Viability of MC3T3-E1 Osteoblastic and MG-63 Bone Cancer Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Zambanini, T.; Borges, R.; Marchi, J. Bioactive glass/polymer composites for drug delivery. In Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches; Gurbinder, K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319560595. [Google Scholar]
- Hench, L.L. Bioactive Ceramics. Ann. N. Y. Acad. Sci. 1988, 523, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.B. Bioactive Borate Glasses. Bio-Glasses 2012, 75–95. [Google Scholar] [CrossRef]
- Mathew, R.; Stevensson, B.; Edén, M. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations. J. Phys. Chem. B 2015, 119, 5701–5715. [Google Scholar] [CrossRef]
- Sene, F.F.; Martinelli, J.R.; Okuno, E. Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids 2008, 354, 4887–4893. [Google Scholar] [CrossRef]
- Marchi, J. Biocompatible Glasses: From Bone Regeneration to Cancer Treatment, 1st ed.; Marchi, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-44247-1. [Google Scholar]
- Siqueira, R.L.; Zanotto, E.D. Biosilicato®: Histórico de uma vitrocerâmica brasileira de elevada bioatividade. Quim. Nov. 2011, 34, 1231–1241. [Google Scholar] [CrossRef]
- Lopez, T.C.C.; Diniz, I.M.A.; Ferreira, L.S.; Marchi, J.; Borges, R.; De Cara, S.P.H.M.; D’Almeida-Couto, R.; Marques, M.M. Bioactive glass plus laser phototherapy as promise candidates for dentine hypersensitivity treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.M.R.; Borges, R.; Marchi, J.; de Paula Eduardo, C.; Marques, M.M. Bioactive glass and high-intensity lasers as a promising treatment for dentin hypersensitivity: An in vitro study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kang, X.; Cheng, Z.; Ma, P.; Jia, Y.; Lin, J. Electrospinning preparation and drug delivery properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers. J. Colloid Interface Sci. 2012, 387, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.; Kai, K.C.; Marchi, J. Biocompatible Glasses for controlled release technology. In Biocompatible Glasses: From Bone Regeneration to Cancer Treatment; Marchi, J., Ed.; Springer International: Cham, Switzerland, 2016; Volume 53, pp. 285–315. ISBN 978-3-319-44247-1. [Google Scholar]
- Hossain, K.M.Z.; Patel, U.; Ahmed, I. Development of microspheres for biomedical applications: A review. Prog. Biomater. 2015, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Lin, S.; Yue, S.; Lee, P.D.; Hanna, J.V.; Smith, M.E.; Newport, R.J. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc. Inst. Mech. Eng. H 2010, 224, 1373–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kargozar, S.; Baino, F.; Hamzehlou, S.; Hill, R.G.; Mozafari, M. Bioactive glasses entering the mainstream. Drug Discov. Today 2018, 23, 1700–1704. [Google Scholar] [CrossRef]
- Aspasio, R.D.; Borges, R.; Marchi, J. Biocompatible Glasses for Cancer Treatment. In Biocompatible Glasses: From Bone Regen-Eration to Cancer Treatment; Marchi, J., Ed.; Springer International: Cham, Switzerland, 2016; Volume 53, pp. 249–265. ISBN 978-3-319-44247-1. [Google Scholar]
- Velasco, M.V.; Souza, M.T.; Crovace, M.C.; De Oliveira, A.J.A.; Zanotto, E.D. Bioactive magnetic glass-ceramics for cancer treatment. Biomed. Glas. 2019, 5, 148–177. [Google Scholar] [CrossRef]
- Kargozar, S.; Mozafari, M.; Hamzehlou, S.; Kim, H.; Baino, F. Mesoporous bioactive glasses (MBGs) in cancer therapy: Full of hope and promise. Mater. Lett. 2019, 251, 241–246. [Google Scholar] [CrossRef]
- Zanotto, E.D.; Coutinho, F. How many non-crystalline solids can be made from all the elements of the periodic table? J. Non-Cryst. Solids 2004, 347, 285–288. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, A.; Shin, W.; Heo, M.B.; Noh, H.J.; Hong, K.S.; Cho, J.H.; Lim, Y.T. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel. Int. J. Nanomed. 2017, 12, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare earth elements in human and animal health: State of art and research priorities. Environ. Res. 2015, 142, 215–220. [Google Scholar] [CrossRef]
- Hu, F.; Wei, X.; Qin, Y.; Jiang, S.; Li, X.; Zhou, S.; Chen, Y.; Duan, C.-K.; Yin, M. Yb3+/Tb3+ co-doped GdPO4 transparent magnetic glass-ceramics for spectral conversion. J. Alloy. Compd. 2016, 674, 162–167. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, P.; Huang, S.; Jiang, J.; Lian, H.; Lin, J. Luminescent and Mesoporous Europium-Doped Bioactive Glasses (MBG) as a Drug Carrier. J. Phys. Chem. C 2009, 113, 7826–7830. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Enferadi, M.; Sadeghi, M. Dosimetric aspects of Ho brachytherapy biodegradable glass seed. Appl. Radiat. Isot. 2013, 73, 109–115. [Google Scholar] [CrossRef]
- Conzone, S.D.; Hall, M.M.; Day, D.E.; Brown, R.F. Biodegradable radiation delivery system utilizing glass microspheres and ethylenediaminetetraacetate chelation therapy. J. Biomed. Mater. Res. A 2004, 70, 256–264. [Google Scholar] [CrossRef]
- Zambanini, T.; Borges, R.; Faria, P.C.; Delpino, G.P.; Pereira, I.S.; Marques, M.M.; Marchi, J. Dissolution, bioactivity behavior, and cytotoxicity of rare earth-containing bioactive glasses (RE = Gd, Yb). Int. J. Appl. Ceram. Technol. 2019, 16, 2028–2039. [Google Scholar] [CrossRef]
- Eisenstein, M. Prostate Cancer: A Declining Art. Nature 2019, 574, S81. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, M.; Reading-Ikkanda, L. Keeping Treatment Options Open. Nature 2019, 574, S82–S83. [Google Scholar] [CrossRef]
- Day, D.E. Glasses for Radiotherapy. Bio-Glasses 2012, 203–228. [Google Scholar] [CrossRef]
- Bretcanu, O.; Evans, I. Glasses for Treatment of Liver Cancer by Radioembolization. In Biocompatible Glasses: From Bone Re-Generation to Cancer Treatment; Marchi, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 267–283. [Google Scholar]
- Roberto, W.S.; Pereira, M.M.; Campos, T.P.R. Dosimetric Analysis and Characterization of Radioactive Seeds Produced by the Sol-Gel Method. Key Eng. Mater. 2003, 242, 579–582. [Google Scholar] [CrossRef]
- Roberto, W.D.S.; Pereira, M.M.; De Campos, T.P.R. Analysis of bioactive glasses obtained by sol-gel processing for radioactive implants. Mater. Res. 2003, 6, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Roberto, W.S.; Pereira, M.M.; Campos, T.P.R. Structure and Dosimetric Analysis of Biodegradable Glasses for Prostate Cancer Treatment. Artif. Organs 2003, 27, 432–436. [Google Scholar] [CrossRef]
- Pouget, J.-P.; Lozza, C.; Deshayes, E.; Boudousq, V.; Navarro-Teulon, I. Introduction to Radiobiology of Targeted Radionuclide Therapy. Front. Med. 2015, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Taghdiri, F.; Hosseini, S.H.; Tenreiro, C.; Tenreiro, C. Monte Carlo Calculated TG-60 Dosimetry Parameters for the β—Emitter S 153 m Brachytherapy Source Monte Carlo Calculated TG-60 Dosimetry Parameters for the—Emitter Sm Brachytherapy Source. Med. Phys. 2010, 5370, 5369–5395. [Google Scholar] [CrossRef]
- Christie, J.K.; Malik, J.; Tilocca, A. Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: Investigating the structural effects of yttrium. Phys. Chem. Chem. Phys. 2011, 13, 17749–17755. [Google Scholar] [CrossRef]
- Christie, J.K.; Tilocca, A. Integrating biological activity into radioisotope vectors: Molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 2012, 22, 12023–12031. [Google Scholar] [CrossRef]
- Borges, R.; Schneider, J.F.; Marchi, J. Structural characterization of bioactive glasses containing rare earth elements (Gd and/or Yb). J. Mater. Sci. 2019, 54, 11390–11399. [Google Scholar] [CrossRef]
- Borges, R.; Marchi, J. The influence of gadolinium on the thermal properties of bioactive glasses. Biomed. Glas. 2019, 5, 193–202. [Google Scholar] [CrossRef]
- Nogueira, L.B.; Campos, T.P.R. Synthesis, chemical characterization and radiological response of Ho and HoZr bioglass seeds. J. Sol-Gel Sci. Technol. 2015, 77, 688–698. [Google Scholar] [CrossRef]
- Diniz, M.F.; Ferreira, D.M.; de Lima, W.G.; Pedrosa, M.L.; Silva, M.E.; de Almeida Araujo, S.; Sampaio, K.H.; de Campos, T.P.R.; Siqueira, S.L. Biodegradable seeds of holmium don’t change neurological function after implant in brain of rats. Rep. Pr. Oncol. Radiother. J. Gt. Cancer Cent. Pozn. Pol. Soc. Radiat. Oncol. 2017, 22, 319–326. [Google Scholar] [CrossRef]
- Delpino, G.P.; Borges, R.; Zambanini, T.; Joca, J.F.S.; Gaubeur, I.; De Souza, A.C.S.; Marchi, J. Sol-gel-derived 58S bioactive glass containing holmium aiming brachytherapy applications: A dissolution, bioactivity, and cytotoxicity study. Mater. Sci. Eng. C 2021, 119, 111595. [Google Scholar] [CrossRef]
- Chen, B.; Xiang, H.; Pan, S.; Yu, L.; Xu, T.; Chen, Y. Advanced Theragenerative Biomaterials with Therapeutic and Regeneration Multifunctionality. Adv. Funct. Mater. 2020, 30, 1–27. [Google Scholar] [CrossRef]
- Huang, H.; Lovell, J.F. Advanced Functional Nanomaterials for Theranostics. Adv. Funct. Mater. 2017, 27, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielhuis, S.W.; Nijsen, J.F.W.; De Roos, R.; Krijger, G.C.; Van Rijk, P.P.; Hennink, W.E.; Van Het Schip, A.D. Production of GMP-grade radioactive holmium loaded poly(l-lactic acid) microspheres for clinical application. Int. J. Pharm. 2006, 311, 69–74. [Google Scholar] [CrossRef]
- Van Nimwegen, S.A.; Bakker, R.C.; Kirpensteijn, J.; Van Es, R.J.J.; Koole, R.; Lam, M.G.E.H.; Hesselink, J.W.; Nijsen, J.F.W. Intratumoral injection of radioactive holmium (166Ho) microspheres for treatment of oral squamous cell carcinoma in cats. Vet. Comp. Oncol. 2018, 16, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bult, W.; Kroeze, S.G.C.; Elschot, M.; Seevinck, P.R.; Beekman, F.J.; De Jong, H.W.A.M.; Uges, D.R.A.; Kosterink, J.G.W.; Luijten, P.R.; Hennink, W.E.; et al. Intratumoral Administration of Holmium-166 Acetylacetonate Microspheres: Antitumor Efficacy and Feasibility of Multimodality Imaging in Renal Cancer. PLoS ONE 2013, 8, e52178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontremoli, C.; Boffito, M.; Fiorilli, S.; Laurano, R.; Torchio, A.; Bari, A.; Tonda-Turo, C.; Ciardelli, G.; Vitale-Brovarone, C. Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chem. Eng. J. 2018, 340, 103–113. [Google Scholar] [CrossRef]
- Devi, D.R.; Sandhya, P.; Hari, B.N.V. Poloxamer: A Novel Functional Molecule for Drug Delivery and Gene Therapy. J. Pharm. Sci. Res. 2013, 5, 159–165. [Google Scholar]
- Domb, A.; Khan, W. Focal Controlled Drug Delivery (Advances in Delivery Science and Technology); Springer: Boston, MA, USA, 2014. [Google Scholar]
- Oshiro, A.; Da Silva, D.C.; De Mello, J.C.; De Moraes, V.W.R.; Cavalcanti, L.P.; Franco, M.K.K.D.; Alkschbirs, M.I.; Fraceto, L.F.; Yokaichiya, F.; Rodrigues, T.; et al. Pluronics F-127/L-81 Binary Hydrogels as Drug-Delivery Systems: Influence of Physicochemical Aspects on Release Kinetics and Cytotoxicity. Langmuir 2014, 30, 13689–13698. [Google Scholar] [CrossRef]
- Jung, Y.; Park, W.; Park, H.; Lee, D.-K.; Na, K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr. Polym. 2017, 156, 403–408. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J. Control. Release 2015, 209, 120–138. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 2002, 54, 759–779. [Google Scholar] [CrossRef]
- Xia, W.; Chang, J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol-gel method. Mater. Lett. 2007, 61, 3251–3253. [Google Scholar] [CrossRef]
- Borges, R.; Marchi, J. Sol-Gel Synthesis of Bioglasses: A Growth Kinetics Study by Dynamic Light Scattering. Adv. Sci. Technol. 2016, 102, 18–23. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Ramsey, J.D.; Samadi, A.; Atoufi, Z.; Yazdi, M.K.; Ganjali, M.R.; Amirabad, L.M.; Zangene, E.; Farokhi, M.; Formela, K.; et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020, 110, 37–67. [Google Scholar] [CrossRef] [PubMed]
- Pandit, N.K.; Kisaka, J. Loss of gelation ability of Pluronic® F127 in the presence of some salts. Int. J. Pharm. 1996, 145, 129–136. [Google Scholar] [CrossRef]
- Maas, M.; Hess, U.; Rezwan, K. The contribution of rheology for designing hydroxyapatite biomaterials. Curr. Opin. Colloid Interface Sci. 2014, 19, 585–593. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Pucciarelli, S.; Casettari, L.; Palmieri, G.F.; Bonacucina, G. Effect of phosphate buffer on the micellisation process of Poloxamer 407: Microcalorimetry, acoustic spectroscopy and dynamic light scattering (DLS) studies. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 123–129. [Google Scholar] [CrossRef]
- Dumortier, G.; Grossiord, J.L.; Agnely, F.; Chaumeil, J.C. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm. Res. 2006, 23, 2709–2728. [Google Scholar] [CrossRef]
- Fusi, L.; Farina, A.; Rosso, F. Bingham flows with pressure-dependent rheological parameters. Int. J. Non-Linear Mech. 2014, 64, 33–38. [Google Scholar] [CrossRef]
- Park, E.; Song, K. Rheological Properties of Poloxamer 407 Solutions and Gels. Annu. Trans. Nord. Rheol. Soc. 2011, 19, 1–5. [Google Scholar]
- Escobar-Chávez, J.J.; López-Cervantes, M.; Naïk, A.; Kalia, Y.N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of Thermo-Reversible Pluronic F-127 Gels in Pharmaceutical Formulations. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Soc. Can. Sci. Pharm. 2006, 9, 339–358. [Google Scholar]
- Dos Santos, A.C.M.; Akkari, A.C.S.; Ferreira, I.R.S.; Maruyama, C.R.; Pascoli, M.; Guilherme, V.A.; De Paula, E.; Fraceto, L.F.; De Lima, R.; Melo, P.D.S.; et al. Poloxamer-based binary hydrogels for delivering tramadol hydrochloride: Sol-gel transition studies, dissolution-release kinetics, in vitro toxicity, and pharmacological evaluation. Int. J. Nanomed. 2015, 10, 2391–2401. [Google Scholar] [CrossRef] [Green Version]
- Wieszczycka, K.; Staszak, K.; Woźniak-Budych, M.J.; Jurga, S. Lanthanides and tissue engineering strategies for bone regeneration. Coord. Chem. Rev. 2019, 388, 248–267. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Lu, B.; Yin, J.H.; Ke, Q.F.; Xu, H.; Zhang, C.Q.; Guo, Y.P.; Gao, Y.S. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Int. J. Nanomed. 2019, 14, 1085–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, B.; Liu, X.; Sun, J. Dual-Functional Dendritic Mesoporous Bioactive Glass Nanospheres for Calcium Influx-Mediated Specific Tumor Suppression and Controlled Drug Delivery in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 23548–23559. [Google Scholar] [CrossRef] [PubMed]
Nomenclature | SiO2 | CaO | P2O5 | Ho2O3 |
---|---|---|---|---|
BG | 58.00 | 33.00 | 9.00 | - |
BG1.25Ho | 57.28 | 32.59 | 8.89 | 1.25 |
BG2.5Ho | 56.55 | 32.18 | 8.78 | 2.50 |
BG3.75Ho | 55.83 | 31.76 | 8.66 | 3.75 |
BG5Ho | 55.10 | 31.35 | 8.55 | 5.00 |
Poloxamer | Bioactive Glass | Formulation |
---|---|---|
PL407 | None | PL |
BG | PL-BG | |
BG1.25Ho | PL-BG1.25Ho | |
BG2.5Ho | PL-BG2.5Ho | |
BG3.75Ho | PL-BG3.75Ho | |
BG5Ho | PL-BG5Ho |
Formulation | Tonset (°C) | Tmic (°C) | Tendset (°C) | ΔH° (kJ·mol−1) | ΔG° (kJ·mol−1) | ΔS° (kJ·mol−1·K−1) |
---|---|---|---|---|---|---|
PL | 9.5 | 13.8 | 20.0 | 68.59 | −9.35 | 0.27 |
PL-BG | 10.0 | 13.8 | 20.5 | 65.31 | −9.35 | 0.26 |
PL-BG1.25Ho | 10.5 | 13.8 | 20.5 | 64.84 | −9.35 | 0.26 |
PL-BG2.5Ho | 10.5 | 13.8 | 20.4 | 64.35 | −9.35 | 0.26 |
PL-BG3.75Ho | 10.7 | 13.9 | 20.5 | 59.43 | −9.35 | 0.24 |
PL-BG5Ho | 10.5 | 13.7 | 20.0 | 65.24 | −9.34 | 0.26 |
Viscosity Values (mPa·s) at Different Temperatures | ||||
---|---|---|---|---|
Formulation | Tgel | 10 °C | 25 °C | 37 °C |
PL | 19.64 ± 0.72 | 43.68 ± 1.32 | (23.25 ± 0.07) × 106 | (27.89 ± 0.10) × 106 |
PL-BG | 19.92 ± 0.30 | 67.04 ± 8.19 | (2.70 ± 0.11) × 106 | (3.38 ± 0.09) × 106 |
PL-BG1.25Ho | 19.87 ± 0.12 | 73.52 ± 13.60 | (3.09 ± 0.20) × 106 | (3.87 ± 0.23) × 106 |
PL-BG2.5Ho | 20.07 ± 0.28 | 65.13 ± 7.94 | (2.87 ± 0.05) × 106 | (3.55 ± 0.13) × 106 |
PL-BG3.75Ho | 20.08 ± 0.47 | 61.68 ± 11.14 | (2.63 ± 0.21) × 106 | (3.30 ± 0.17) × 106 |
PL-BG5Ho | 20.05 ± 0.25 | 62.14 ± 4.83 | (2.84 ± 0.15) × 106 | (3.50 ± 0.25) × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambanini, T.; Borges, R.; de Souza, A.C.S.; Justo, G.Z.; Machado, J., Jr.; de Araujo, D.R.; Marchi, J. Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment. Materials 2021, 14, 1459. https://doi.org/10.3390/ma14061459
Zambanini T, Borges R, de Souza ACS, Justo GZ, Machado J Jr., de Araujo DR, Marchi J. Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment. Materials. 2021; 14(6):1459. https://doi.org/10.3390/ma14061459
Chicago/Turabian StyleZambanini, Telma, Roger Borges, Ana C. S. de Souza, Giselle Z. Justo, Joel Machado, Jr., Daniele R. de Araujo, and Juliana Marchi. 2021. "Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment" Materials 14, no. 6: 1459. https://doi.org/10.3390/ma14061459
APA StyleZambanini, T., Borges, R., de Souza, A. C. S., Justo, G. Z., Machado, J., Jr., de Araujo, D. R., & Marchi, J. (2021). Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment. Materials, 14(6), 1459. https://doi.org/10.3390/ma14061459