Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of GO-HCCP
2.3. Preparation of PET-GO-HCCP Composites
2.4. Characterizations
3. Results
3.1. The Molecular Structure of GO-HCCP
3.2. The Characteristics of PET Composites
3.2.1. Morphology
3.2.2. Thermal Properties
3.2.3. Flammability
3.2.4. Mechanical Properties
3.3. Mechanism of Flame Retardation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Lei, Y.; Li, X.; Shao, H.; Xu, W.; Li, D. A facile, environmentally and friendly flame-retardant: Synergistic flame retardant property of polyurethane rigid foam. Mater. Lett. 2020, 267, 127542. [Google Scholar] [CrossRef]
- Xue, B.; Song, Y.; Peng, Y.; Bai, J.; Yang, Y.; Niu, M.; Yang, Y.; Liu, X. Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan. J. Text. Inst. 2017, 109, 871–878. [Google Scholar] [CrossRef]
- Üreyen, M.E.; Kaynak, E. Effect of Zinc Borate on Flammability of PET Woven Fabrics. Adv. Polym. Technol. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Niu, M.; Dai, J.; Bai, J.; Xue, B.; Song, Y.; Peng, Y. Flame-retarded polyethylene terephthalate with carbon microspheres/magnesium hydroxide compound flame retardant. Fire Mater. 2018, 42, 794–804. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, L.; Song, L.; Hu, Y.; Wang, W.; Zhao, H. Durable flame retardant treatment of polyethylene terephthalate (PET) fabric with cross-linked layer-by-layer assembled coating. Polym. Degrad. Stab. 2019, 165, 145–152. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, C.; Zhang, Y.; Guo, W. Preparation and Characterization of Flame-Retarded Poly(butylene terephthalate)/Poly(ethylene terephthalate) Blends: Effect of Content and Type of Flame Retardant. Polymers 2019, 11, 1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Niu, R.; Liu, J.; Chen, X.; Wen, X.; Mijowska, E.; Sun, Z.; Tang, T. Correction: Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv. 2015, 5, 42622. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Jing, J.; Zhang, Y.; Fang, Z. Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA. RSC Adv. 2018, 8, 4483–4493. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Meng, X.; Sun, J.; Tang, W.; Chen, S.; Peng, X.; Gu, X.; Fei, B.; Bourbigot, S.; Zhang, S. Improving the flame retardant properties of polyester-cotton blend fabrics by introducing an intumescent coating via layer by layer assembly. J. Appl. Polym. Sci. 2020, 137, 49253. [Google Scholar] [CrossRef]
- Ni, Y.P.; Wu, W.S.; Chen, L.; Zhao, X.; Qin, Z.H.; Wang, X.L.; Wang, Y.Z. How Hydrogen Bond Interactions Affect the Flame Retardancy and Anti-Dripping Performances of PET. Macromol. Mater. Eng. 2019, 305, 1900661. [Google Scholar] [CrossRef]
- Xia, J.; Su, Y.; Li, W. Post-polymerization functionalization to a novel phosphorus- and nitrogen-containing polyether coating for flame retardant treatment of PET fabric. J. Appl. Polym. Sci. 2019, 136, 47299. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Liu, Y.; Chen, R.; Li, W. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. Rsc Adv. 2018, 8, 2575–2585. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Xue, B.; Song, Y.; Wang, J.; Niu, M. Preparation of a novel phosphorus-containing organosilicon and its effect on the flame retardant and smoke suppression of polyethylene terephthalate. Polym. Adv. Technol. 2019, 30, 1279–1289. [Google Scholar] [CrossRef]
- Koklukaya, O.; Carosio, F.; Wagberg, L. Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Appl. Mater. Interfaces 2017, 9, 29082–29092. [Google Scholar] [CrossRef] [PubMed]
- Li, M.E.; Wang, S.X.; Han, L.X.; Yuan, W.J.; Cheng, J.B.; Zhang, A.N.; Zhao, H.B.; Wang, Y.Z. Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. J. Hazard. Mater. 2019, 375, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Tang, G.; Gao, R.; Jiang, S. In situ growth of 0D silica nanospheres on 2D molybdenum disulfide nanosheets: Towards reducing fire hazards of epoxy resin. J. Hazard. Mater. 2018, 344, 1078–1089. [Google Scholar] [CrossRef]
- Jiang, S.D.; Tang, G.; Chen, J.; Huang, Z.Q.; Hu, Y. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin. J. Hazard. Mater. 2018, 342, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kan, Y.; Yu, X.; Liu, J.; Song, L.; Hu, Y. In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: Towards reducing fire hazards of unsaturated polyester resin. J. Hazard. Mater. 2016, 320, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, C.; Shi, Y.; Yuan, B.; Sun, Y.; Bai, Z. MoO3-ZrO2 solid acid for enhancement in the efficiency of intumescent flame retardant. Powder Technol. 2019, 344, 581–589. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Qi, X.; Zhang, W.; Wang, D.-Y. Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. Part B Eng. 2020, 188, 107881. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Wu, Y.; Li, W.; Chen, C. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.-B.; Ni, Y.-P.; Fu, T.; Wu, W.-S.; Wang, X.-L.; Wang, Y.-Z. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 2019, 7, 17037–17045. [Google Scholar] [CrossRef]
- Wu, J.-N.; Qin, Z.-H.; Chen, L.; Liu, B.-W.; Wang, X.-L.; Wang, Y.-Z. Tailoring Schiff base cross-linking by cyano group toward excellent flame retardancy, anti-dripping and smoke suppression of PET. Polymer 2018, 153, 78–85. [Google Scholar] [CrossRef]
- Zhao, H.B.; Wang, Y.Z. Design and Synthesis of PET-Based Copolyesters with Flame-Retardant and Antidripping Performance. Macromol Rapid Commun 2017, 38. [Google Scholar] [CrossRef]
- Januszewski, R.; Dutkiewicz, M.; Kubicki, M.; Dutkiewicz, G.; Maciejewski, H.; Marciniec, B. Synthesis and characterization of new (dimethylsilyl)phenoxy and (dimethyl(vinyl)silyl)phenoxy substituted cyclotriphosphazenes. J. Organomet. Chem. 2017, 853, 64–67. [Google Scholar] [CrossRef]
- Ai, L.; Chen, S.; Zeng, J.; Liu, P.; Liu, W.; Pan, Y.; Liu, D. Synthesis and flame retardant properties of cyclophosphazene derivatives containing boron. Polym. Degrad. Stab. 2018, 155, 250–261. [Google Scholar] [CrossRef]
- Fang, Y.; Zhou, X.; Xing, Z.; Wu, Y. An effective flame retardant for poly(ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotriphosphazene. J. Appl. Polym. Sci. 2017, 134, 45246. [Google Scholar] [CrossRef]
- Wang, J.; Su, X.; Mao, Z. The flame retardancy and thermal property of poly (ethylene terephthalate)/cyclotriphosphazene modified by montmorillonite system. Polym. Degrad. Stab. 2014, 109, 154–161. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Wu, L.; Tsai, T. One-step in situ synthesis of a novel α-zirconium phosphate/graphene oxide hybrid and its application in phenolic foam with enhanced mechanical strength, flame retardancy and thermal stability. RSC Adv. 2016, 6, 74903–74912. [Google Scholar] [CrossRef]
- Yuan, B.; Song, L.; Liew, K.M.; Hu, Y. Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. RSC Adv. 2015, 5, 41307–41316. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Deng, N. Synthesis of organophosphate-functionalized graphene oxide for enhancing the flame retardancy and smoke suppression properties of transparent fire-retardant coatings. Polym. Degrad. Stab. 2020, 172, 109064. [Google Scholar] [CrossRef]
- Leng, Q.; Li, J.; Wang, Y. Structural analysis of α-zirconium phosphate/cerium phosphate/graphene oxide nanocomposites with flame-retardant properties in polyvinyl alcohol. New J. Chem. 2020, 44, 4568–4577. [Google Scholar] [CrossRef]
- Cao, C.-F.; Wang, P.-H.; Zhang, J.-W.; Guo, K.-Y.; Li, Y.; Xia, Q.-Q.; Zhang, G.-D.; Zhao, L.; Chen, H.; Wang, L.; et al. One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem. Eng. J. 2020, 393, 124724. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, L.; Guan, Q.; Liang, G.; Gu, A. Synergistically building flame retarding thermosetting composites with high toughness and thermal stability through unique phosphorus and silicone hybridized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2017, 98, 174–183. [Google Scholar] [CrossRef]
- Xu, W.; Liu, L.; Zhang, B.; Hu, Y.; Xu, B. Effect of Molybdenum Trioxide-Loaded Graphene and Cuprous Oxide-Loaded Graphene on Flame Retardancy and Smoke Suppression of Polyurethane Elastomer. Ind. Eng. Chem. Res. 2016, 55, 4930–4941. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, Y.; Tang, X.; Li, X.; Peng, M.; Fang, Z. Combination of a bio-based polyphosphonate and modified graphene oxide toward superior flame retardant polylactic acid. RSC Adv. 2018, 8, 4304–4313. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, J.; Ni, A.; Ding, A.; Han, X.; Sun, Z. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Materials 2018, 11, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, H.; Fan, X. Grafting of amine-capped cross-linked polyphosphazenes onto carbon fiber surfaces: A novel coupling agent for fiber reinforced composites. RSC Adv. 2014, 4, 12198. [Google Scholar] [CrossRef]
- Li, J.; Zeng, X.; Kong, D.; Xu, H.; Zhang, L.; Zhong, Y.; Sui, X.; Mao, Z. Synergistic effects of a novel silicon-containing triazine charring agent on the flame-retardant properties of poly(ethylene terephthalate)/hexakis (4-phenoxy)cyclotriphosphazene composites. Polym. Compos. 2018, 39, 858–868. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Ma, T.; Zhong, Y.; Zhang, L.; Xu, H.; Wang, B.; Sui, X.; Feng, X.; Chen, Z.; et al. Flame-retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire. Polym. Adv. Technol. 2019, 31, 795–806. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, W.; He, S.; Wang, X.; Jiao, Y.; Qu, H.; Xu, J. Synergistic flame retardant effects of activated carbon and molybdenum oxide in poly(vinyl chloride). Polym. Int. 2018, 67, 445–452. [Google Scholar] [CrossRef]
Sample | 1 Tg (°C) | 2 Tcc (°C) | 3 Tmc (°C) | 4 Tm (°C) |
---|---|---|---|---|
PET | 71.1 | 141.0 | 199.9 | 248.0 |
PET-0.4G | 49.4 | 108.2 | 156.5 | 203.7 |
PET-0.2H | 51.4 | 128.3 | 133.2 | 206.5 |
PET-0.4G-0.2H | 72.4 | 143.5 | 199.0 | 250.7 |
Sample | 1 T5 wt% (°C) | 2 T30 wt% (°C) | 3 T50 wt% (°C) | 4 Tmax (°C) | 5 Cw (wt%) |
---|---|---|---|---|---|
PET | 381.9 | 412.8 | 425.7 | 428.7 | 8.3 |
PET-0.4G | 383.8 | 411.1 | 422.2 | 425.7 | 8.8 |
PET-0.2H | 391.8 | 420.7 | 432.1 | 435.6 | 6.9 |
PET-0.4G-0.2H | 391.7 | 418.7 | 430.1 | 432.6 | 11.0 |
Samples | Composition (wt%) | LOI (%) | UL-94 | ||
---|---|---|---|---|---|
GO | HCCP (Pwt%) | GO-HCCP | |||
PET | 0 | 0 | 0 | 22 | V-2 |
1 PET-0.4G | 0.4 | 0 | 0 | 21 | V-2 |
2 PET-0.2H | 0 | 0.2 | 0 | 26 | V-2 |
3 PET-0.4G-0.2H | 0 | 0 | 0.4-0.2 | 24 | V-2 |
Sample | 1 TTI | 2 pHRR | 3 THR | 4 pSPR | 5 COP | 6 CO2P | 7 MEHC |
---|---|---|---|---|---|---|---|
(s) | (kW/m2) | (MJ/m2) | (m2/S) | (g/s) | (g/s) | (MJ/Kg) | |
PET | 63 ± 2 | 875.9 ± 11 | 60.7 ± 1 | 0.24 ± 0.01 | 0.024 ± 0.02 | 0.62 ± 0.02 | 19.0 ± 0.2 |
PET-0.4G | 50 ± 1 | 916.0 ± 12 | 71.4 ± 2 | 0.27 ± 0.02 | 0.019 ± 0.01 | 0.65 ± 0.02 | 18.9 ± 0.2 |
PET-0.2H | 57 ± 2 | 618.9 ± 9 | 55.1 ± 1 | 0.21 ± 0.01 | 0.021 ± 0.01 | 0.51 ± 0.01 | 16.6 ± 0.1 |
PET-0.4G-0.2H | 58 ± 1 | 648.6 ± 11 | 63.3 ± 2 | 0.20 ± 0.02 | 0.015 ± 0.01 | 0.43 ± 0.01 | 17.8 ± 0.2 |
Sample | Barrier Effect (%) | Flame Inhibition Effect (%) | Charring Effect (%) |
---|---|---|---|
PET-0.4G | 11.1 | 0 | 4.4 |
PET-0.2H | 22.2 | 12.6 | 9.5 |
PET-0.4G-0.2H | 29.1 | 5.6 | 7.6 |
NO. | Retention Time, min | Name | Content, (%) | |
---|---|---|---|---|
PET | PET-0.4G-0.2H | |||
1, 1′ | 6.10 | Benzene | 7.6 | 5.2 |
2, 2′ | 7.49 | Styrene | 5.1 | 3.7 |
3, 3′ | 7.82 | Acetophenone | 3.9 | 3.1 |
4, 4′ | 7.95 | Benzoic acid | 34.1 | 39.6 |
5, 5′ | 8.53 | Methyl benzoate | 8.5 | 4.8 |
6, 6′ | 9.23 | Biphenyl | 7.2 | 4.3 |
7, 7′ | 9.47 | p-ethylbenzoic acid | 6.3 | 4.6 |
8, 8′ | 11.13 | Terephthalic acid | 8.7 | 11.3 |
9, 9′ | 12.46 | p-Acetylacetophenone | 5.0 | 7.2 |
10, 10′ | 13.56 | p-Vinylbiphenyl | 1.9 | 1.7 |
11, 11′ | 13.706 | p-Phenylacetophenone | 2.1 | 1.6 |
12, 12′ | 15.01 | Ethane-1,2-diyl dibenzoate | 1.7 | 1.4 |
13, 13′ | 15.37 | Terphenyl | 3.1 | 1.9 |
14, 14′ | 16.98 | 1,3-Diphenyl-1,3-propanedione | 1.6 | 1.1 |
15 | 17.33 | Phthalazine-1,4(2H,3H)-dione, 2-(2-methyl-5-nitrophenyl) | - | 1.3 |
16 | 17.95 | 5-Ethyl-5-phenylhydantoin | - | 0.9 |
17 | 20.52 | 1,2,4-benzenetricarboxylic acid, 3,5-dinitro-trimethyl ester | - | 1.4 |
18 | 21.25 | 8,10,18,20,21,23-hexaene-2,7,12,17-tetrone | - | 1.2 |
19 | 21.37 | o-(4,6-Diphenyl-1,3,5-triazin-2-yl)phenol | - | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Wang, R.; Zhu, Z.; Wang, W.; Wu, H. Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism. Materials 2021, 14, 1470. https://doi.org/10.3390/ma14061470
Wei L, Wang R, Zhu Z, Wang W, Wu H. Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism. Materials. 2021; 14(6):1470. https://doi.org/10.3390/ma14061470
Chicago/Turabian StyleWei, Lifei, Rui Wang, Zhiguo Zhu, Wenqing Wang, and Hanguang Wu. 2021. "Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism" Materials 14, no. 6: 1470. https://doi.org/10.3390/ma14061470
APA StyleWei, L., Wang, R., Zhu, Z., Wang, W., & Wu, H. (2021). Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism. Materials, 14(6), 1470. https://doi.org/10.3390/ma14061470