Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Model Fabrication and Scanning
2.2. Superimposition and 3D Deviation Evaluation
2.3. Statistical Analysis
3. Results
3.1. Whole-Deviation Analysis and Color Map
3.2. Point Deviation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tjan, A.H.; Castelnuovo, J.; Shiotsu, G. Marginal fidelity of crowns fabricated from six proprietary provisional materials. J. Prosthet. Dent. 1997, 77, 482–485. [Google Scholar] [CrossRef]
- Karlsen, K. Gingival reactions to dental restorations. Acta Odontol. Scand. 1970, 28, 895–904. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Vasamsetty, P.; Pss, T.; Kukkala, D.; Singamshetty, M.; Gajula, S. 3D printing in dentistry–Exploring the new horizons. Mater. Today 2020, 26, 838–841. [Google Scholar] [CrossRef]
- Rahman, M.M. Statistical Analysis of the Digital Micromirror Devices Hinge Sag Phenomenon. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2002. [Google Scholar]
- Chen, H.; Cheng, D.-H.; Huang, S.-C.; Lin, Y.-M. Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. J. Prosthet. Dent. 2020, in press. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Lee, H.; Kim, J.-W.; Kim, J.-H. Cytocompatibility of 3D printed dental materials for temporary restorations on fibroblasts. BMC Oral Health 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, B.; Jin, J.; Chai, Y.; Chen, Y. 3D printing temporary crown and bridge by temperature controlled mask image projection stereolithography. Procedia Manuf. 2018, 26, 1023–1033. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Dafar, M.O.; Grol, M.W.; Canham, P.B.; Dixon, S.J.; Rizkalla, A.S. Reinforcement of flowable dental composites with titanium dioxide nanotubes. Dent. Mater. 2016, 32, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Noushad, M.; Ab Rahman, I.; Husein, A.; Mohamad, D. Nanohybrid dental composite using silica from biomass waste. Powder Technol. 2016, 299, 19–25. [Google Scholar] [CrossRef]
- Kumar, S.R.; Patnaik, A.; Bhat, I. Development and characterization of marble dust-filled dental composite. J. Compos. Mater. 2017, 51, 1997–2008. [Google Scholar] [CrossRef]
- Altaie, A.; Bubb, N.L.; Franklin, P.; Dowling, A.H.; Fleming, G.J.; Wood, D.J. An approach to understanding tribological behaviour of dental composites through volumetric wear loss and wear mechanism determination; beyond material ranking. J. Dent. 2017, 59, 41–47. [Google Scholar] [CrossRef]
- Ryan, E.-A.; Tam, L.E.; McComb, D. Comparative translucency of esthetic composite resin restorative materials. J. Can. Dent. Assoc. 2010, 76, a84. [Google Scholar]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef]
- Ardu, S.; Braut, V.; Gutemberg, D.; Krejci, I.; Dietschi, D.; Feilzer, A.J. A long-term laboratory test on staining susceptibility of esthetic composite resin materials. Quintessence Int. 2010, 41, 695–702. [Google Scholar] [PubMed]
- Romero, M.F. Esthetic anterior composite resin restorations using a single shade: Step-by-step technique. J. Prosthet. Dent. 2015, 114, 9–12. [Google Scholar] [CrossRef]
- Pagano, S.; Coniglio, M.; Valenti, C.; Negri, P.; Lombardo, G.; Costanzi, E.; Cianetti, S.; Montaseri, A.; Marinucci, L. Biological effects of resin monomers on oral cell populations: Descriptive analysis of literature. Eur. J. Paediatr. Dent. 2019, 20, 224–232. [Google Scholar]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Shin, Y.-S.; Jung, H.-D.; Hwang, C.-J.; Baik, H.-S.; Cha, J.-Y. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorenza, L.; Yong, R.; Ranjitkar, S.; Hughes, T.; Quayle, M.; McMenamin, P.G.; Kaidonis, J.; Townsend, G.C.; Adams, J.W. The use of 3D printing in dental anthropology collections. Am. J. Phys. Anthropol. 2018, 167, 400–406. [Google Scholar] [CrossRef]
- Caputi, S.; Varvara, G. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: An in vitro study. J. Prosthet. Dent. 2008, 99, 274–281. [Google Scholar] [CrossRef]
- Martorelli, M.; Gerbino, S.; Giudice, M.; Ausiello, P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent. Mater. 2013, 29, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Hazeveld, A.; Slater, J.J.H.; Ren, Y.; Orthopedics, D. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Brosky, M.; Major, R.; DeLong, R.; Hodges, J.S. Evaluation of dental arch reproduction using three-dimensional optical digitization. J. Prosthet. Dent. 2003, 90, 434–440. [Google Scholar] [CrossRef]
- Nejadebrahim, A.; Ebrahimi, M.; Allonas, X.; Croutxé-Barghorn, C.; Ley, C.; Métral, B. A new safranin based three-component photoinitiating system for high resolution and low shrinkage printed parts via digital light processing. RSC Adv. 2019, 9, 39709–39720. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, H.; Liu, Y.; Jiang, X.; Gao, B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J. Prosthet. Dent. 2019, 121, 285–291. [Google Scholar] [CrossRef]
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef]
- Silikas, N.; Eliades, G.; Watts, D. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 2000, 16, 292–296. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Berge, H.X. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J. Dent. 1998, 26, 695–700. [Google Scholar] [CrossRef]
- Ge, J.; Trujillo, M.; Stansbury, J. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent. Mater. 2005, 21, 1163–1169. [Google Scholar] [CrossRef]
- Sherman, S.L.; Kadioglu, O.; Currier, G.F.; Kierl, J.P.; Li, J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 422–428. [Google Scholar] [CrossRef]
- Brown, G.B.; Currier, G.F.; Kadioglu, O.; Kierl, J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Lee, S.; Kim, G.B.; Hong, D.; Kwon, J.; Park, J.-W.; Kim, N. Accuracy of a simplified 3D-printed implant surgical guide. J. Prosthet. Dent. 2020, 124, 195–201.e192. [Google Scholar] [CrossRef] [PubMed]
- Rungrojwittayakul, O.; Kan, J.Y.; Shiozaki, K.; Swamidass, R.S.; Goodacre, B.J.; Goodacre, C.J.; Lozada, J.L. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J. Prosthodont. 2020, 29, 124–128. [Google Scholar] [CrossRef]
- Reymus, M.; Stawarczyk, B. In vitro study on the influence of postpolymerization and aging on the Martens parameters of 3D-printed occlusal devices. J. Prosthet. Dent. 2020, in press. [Google Scholar] [CrossRef]
- Reymus, M.; Fabritius, R.; Keßler, A.; Hickel, R.; Edelhoff, D.; Stawarczyk, B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: The impact of resin material, build direction, post-curing, and artificial aging—An in vitro study. Clin. Oral Investig. 2020, 24, 701–710. [Google Scholar] [CrossRef] [PubMed]
NextDent C&B | Mazic D Temp | |
---|---|---|
Printer | DLP | LCD |
Shade | A3.5 | A2 |
Chemical composition | Methacrylic oligomer, phosphine oxide | Methacrylic oligomer, phosphine oxide |
Lot. Number | WY364N04 | TP0961A2 |
Median Point Deviation (mm) | |||
---|---|---|---|
DLP | LCD | ||
2-unit | Buccal | 0.04 [0.02, 0.07] A | 0.05 [0.03, 0.08] A |
Lingual | 0.04 [0.02, 0.06] A | 0.07 [0.03, 0.13] A | |
Proximal | 0.06 [0.03, 0.12] B | 0.06 [0.03, 0.09] A | |
3-unit | Buccal | 0.11 [0.04, 0.17] B | 0.05 [0.02, 0.11] A |
Lingual | 0.04 [0.02, 0.09] A | 0.05 [0.02, 0.12] A | |
Proximal | 0.07 [0.04, 0.13] B | 0.07 [0.02, 0.12] A | |
5-unit | Buccal | 0.06 [0.02, 0.12] B | 0.08 [0.03, 0.23] A |
Lingual | 0.04 [0.02, 0.07] A | 0.26 [0.09, 0.39] B | |
Proximal | 0.14 [0.04, 0.21] C | 0.15 [0.11, 0.19] A | |
6-unit | Buccal | 0.08 [0.03, 0.16] A | 0.07 [0.02, 0.13] A |
Lingual | 0.13 [0.05, 0.23] B | 0.06 [0.03, 0.10] A | |
Proximal | 0.08 [0.03, 0.17] A | 0.14 [0.05, 0.22] B | |
Full arch | Buccal | 0.09 [0.04, 0.17] A | 0.13 [0.05, 0.23] B |
Lingual | 0.10 [0.04, 0.19] A | 0.10 [0.04, 0.18] A | |
Proximal | 0.20 [0.11, 0.28] B | 0.18 [0.12, 0.26] B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, W.; Kim, S.; Lim, B.-S.; Park, Y.-S.; Kim, R.J.-Y.; Chung, S.H. Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems. Materials 2021, 14, 1487. https://doi.org/10.3390/ma14061487
Moon W, Kim S, Lim B-S, Park Y-S, Kim RJ-Y, Chung SH. Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems. Materials. 2021; 14(6):1487. https://doi.org/10.3390/ma14061487
Chicago/Turabian StyleMoon, Wonjoon, Seihwan Kim, Bum-Soon Lim, Young-Seok Park, Ryan Jin-Young Kim, and Shin Hye Chung. 2021. "Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems" Materials 14, no. 6: 1487. https://doi.org/10.3390/ma14061487
APA StyleMoon, W., Kim, S., Lim, B. -S., Park, Y. -S., Kim, R. J. -Y., & Chung, S. H. (2021). Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems. Materials, 14(6), 1487. https://doi.org/10.3390/ma14061487